All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Research Progress on Zinc Sulfide Quantum Dots in Tumor in Vivo Imaging

DOI: 10.4236/oalib.1111480, PP. 1-11

Subject Areas: Oncology

Keywords: Zinc Sulfide Quantum Dots, Tumor Imaging, Multimodal Imaging, Biocompatibility

Full-Text   Cite this paper   Add to My Lib

Abstract

This study elaborates on the application and unique contributions of zinc sulfide quantum dots (ZnS QDs) in tumor imaging, highlighting their sig-nificant potential in the field of nanomedicine, particularly in tumor imag-ing techniques. Zinc sulfide quantum dots are distinguished by their supe-rior optical properties, chemical stability, and excellent biocompatibility. Our research focuses on the customization of ZnS QDs through integration with biocompatible compounds, and the use of covalent bonding and self-assembly techniques to incorporate fluorescent and bioactive groups. This significantly enhances imaging precision and efficiency for specific tumor markers. Furthermore, we explore zinc sulfide quantum dots with multimodal imaging capabilities, such as manganese-doped CdS quantum dots (Mn:CdS QDs). This novel discovery paves the way for precise tumor detection, localization, and treatment. Despite the promising applications of zinc sulfide quantum dots, challenges including toxicity, stability, and biocompatibility issues must be addressed in their clinical translation. Thus, this paper calls for future research to focus on developing safer and more efficient new fluorescent probes and to delve deeper into the stability and drug release characteristics of quantum dots to facilitate their use in clinical tumor diagnosis and treatment.

Cite this paper

He, H. , Huang, S. , Ma, J. , Cui, J. and Zhang, X. (2024). Research Progress on Zinc Sulfide Quantum Dots in Tumor in Vivo Imaging. Open Access Library Journal, 11, e1480. doi: http://dx.doi.org/10.4236/oalib.1111480.

References

[1]  Lai, K.S., Ho, N.-H., Cheng, J.D. and Tung, C.-H. (2007) Selective Fluorescence Probes for Dipeptidyl Peptidase Activitys-Fibroblast Activation Protein and Dipeptidyl Peptidase IV. Bioconjugate Chemistry, 18, 1247-1250. https://doi.org/10.1021/bc0603586
[2]  Díaz-Díaz, G., Antuña-Jiménez, D., Blanco-López, M.C., et al. (2012) New Materials for Analytical Biomimetic Assays Based on Affinity and Catalytic Receptors Prepared by Molecular Imprinting. TrAC Trends in Analytical Chemistry, 33, 68-80. https://doi.org/10.1016/j.trac.2011.09.011
[3]  Alivisatos, A.P. (1996) Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271, 933-937. https://doi.org/10.1126/science.271.5251.933
[4]  Fang, X., Zhai, T., Gautam, U.K., et al. (2011) ZnS Nanostructures: From Synthesis to Applications. Progress in Materials Science, 56, 175-287. https://doi.org/10.1016/j.pmatsci.2010.10.001
[5]  Goharshadi, E.K., Mehrkhah, R. and Nancarrow, P. (2013) Synthesis, Characterization, and Measurement of Structural, Optical, and Phtotoluminescent Properties of Zinc Sulfide Quantum Dots. Materials Science in Semiconductor Processing, 16, 356-362. https://doi.org/10.1016/j.mssp.2012.09.012
[6]  Qadri, S.B., Skelton, E.F., Hsu, D., et al. (1999) Size-Induced Transition-Temperature Reduction in Nanoparticles of ZnS. Physical Review B, 60, 9191-9193. https://doi.org/10.1103/PhysRevB.60.9191
[7]  Park, J.H., Lee, S.H., Kim, J.S., et al. (2007) White-Electroluminescent Device with ZnS:Mn, Cu, Cl Phosphor. Journal of Luminescence, 126, 566-570. https://doi.org/10.1016/j.jlumin.2006.10.012
[8]  Tomasulo, M., Yildiz, I., Kaanumalle, S.L., et al. (2006) PH-Sensitive Ligand for Luminescent Quantum Dots. Langmuir, 22, 10284-10290. https://doi.org/10.1021/la0618014
[9]  Hiroko, K., Takato, N. and Yoiehiro, N. (1996) Improvement of Low Voltage Cathodoluminescent Properties of Zinc Sulfide Phosphors by Sol-Gel Method. Japanese Journal of Applied Physics, 35, 1600-1602. https://doi.org/10.1143/JJAP.35.L1600
[10]  Constantine, C.A., Gattás-Asfura, K.M., Mello, S.V., et al. (2003) Layer-by-Layer Biosensor Assembly Incorporating Functionalized Quantum Dots. Langmuir, 19, 9863-9867. https://doi.org/10.1021/la035237y
[11]  Bakalova, R., Zhelev, Z., Aoki, I., Ohba, H., Imai, Y. and Kanno, I. (2006) Silica-Shelled Single Quantum Dot Micelles as Imaging Probes with Dual or Multimodality. Analytical Chemistry, 78, 5925-5932. https://doi.org/10.1021/ac060412b
[12]  Lim, Y.T., Noh, Y.-W., Cho, J.-H., Han, J.H., Choi, S.B., Kwon, J., Hong, K.S., Gokarna, A., Cho, Y.-H. and Chung, B.H. (2009) Multiplexed Imaging of Therapeutic Cells with Multispectrally Encoded Magnetofluorescent Nanocomposite Emulsions. Journal of the American Chemical Society, 131, 17145-17154. https://doi.org/10.1021/ja904472z
[13]  Chen, Y., Ji, T. and Rosenzweig, Z. (2003) Synthesis of Glyconanospheres Containing Luminescent CdSe-ZnS Quantum Dots. Nano Letters, 3, 581-584. https://doi.org/10.1021/nl034086g
[14]  Wei, Y., Jana, N.R., Tan, S.J. and Ying, J.Y. (2009) Surface Coating Directed Cellular Delivery of TAT-Functionalized Quantum Dots. Bioconjugate Chemistry, 20, 1752-1758. https://doi.org/10.1021/bc8003777
[15]  Liu, J.A., Wei, X.L., Qu, Y., et al. (2011) Aqueous Synthesis and Bio-Imaging Application of Highly Luminescent and Low Cytotoxicity Mn2 -Doped ZnSe Nanocrystals. Materials Letters, 65, 2139-2141. https://doi.org/10.1016/j.matlet.2011.04.061
[16]  Kang, W.-S., Lim, I.-H., Yuk, D.-Y., et al. (1999) Antithrombotic Activities of Green Tea Catechins and (2)-Epigallocatechin Gallate. Thrombosis Research, 96, 229-237. https://doi.org/10.1016/S0049-3848(99)00104-8
[17]  Santra, S., Yang, H.S., Holloway, P.H., et al. (2005) Synthesis of Water-Dispersible Fluorescent, Radio-Opaque, and Paramagnetic CdS:Mn/ZnS Quantum Dots: A Multifunctional Probe for Bioimaging. Journal of the American Chemical Society, 127, 1656-1657. https://doi.org/10.1021/ja0464140
[18]  Yang, H., Santra, S., Walter, G.A. and Holloway, P.H. (2006) GdIII-Functionalized Fluorescent Quantum Dots as Multimodal Imaging Probes. Advanced Materials, 18, 2890-2894. https://doi.org/10.1002/adma.200502665
[19]  Mei, B.C., Susumu, K., Medintz, I.L. and Mattoussi, H. (2009) Polyethylene Glycol-Based Bidentate Ligands to Enhance Quantum Dot and Gold Nanoparticle Stability in Biological Media. Nature Protocols, 4, 412-423. https://doi.org/10.1038/nprot.2008.243
[20]  Susumu, K., Mei, B.C. and Mattoussi, H. (2009) Multifunctional Ligands Based on Dihydrolipoic Acid and Polyethylene Glycol to Promote Biocompatibility of Quantum Dots. Nature Protocols, 4, 424-436. https://doi.org/10.1038/nprot.2008.247
[21]  Cooper, D.R., Dimitrijevic, N.M. and Nadeau, J.L. (2010) Photosensitization of CdSe/ZnS QDs and Reliability of Assays for Reactive Oxygen Species Production. Nanoscale, 2, 114-121. https://doi.org/10.1039/B9NR00130A
[22]  Mocatta, D., Cohen, G., Schattner, J., et al. (2011) Heavily Doped Semiconductor Nanocrystal Quantum Dots. Science, 332, 77-81. https://doi.org/10.1126/science.1196321
[23]  Komoto, A., Maenosono, S. and Yamaguchi, Y. (2004) Oscillating Fluorescence in an Unstable Colloidal Dispersion of CdSe/ZnS Core/S Shell Quantum Dots. Langmuir, 20, 8916-8923. https://doi.org/10.1021/la0489211
[24]  Xu, Z., Li, B., Tang, W., et al. (2011) Glycopolypeptide-Encapsulated Mn-Doped ZnS Quantum Dots for Drug Delivery: Fabrication, Characterization, and in vitro Assessment. Colloids and Surfaces B: Biointerfaces, 88, 51-57. https://doi.org/10.1016/j.colsurfb.2011.05.055
[25]  Chen, L.-D., Liu, J., Yu, X.-F., He, M., Pei, X.-F., Tang, Z.-Y., Wang, Q.-Q., Pang, D.-W. and Li, Y. (2008) The Biocompatibility of Quantum Dot Probes Used for the Targeted Imaging of Hepatocellular Carcinoma Metastasis. Biomaterials, 29, 4170-4176.  https://doi.org/10.1016/j.biomaterials.2008.07.025
[26]  Lim, Y.T., Cho, M.Y., Kang, J.-H., Noh, Y.-W., Cho, J.-H., Hong, K.S., Chung, J.W. and Chung, B.H. (2010) Perfluorodecalin/[InGaP/ZnS Quantum Dots] Nanoemulsions as 19F MR/Optical Imaging Nanoprobes for the Labeling of Phagocytic and Nonphagocytic Immune Cells. Biomaterials, 31, 4964-4971. https://doi.org/10.1016/j.biomaterials.2010.02.065
[27]  Ren, H.-B., Wu, B.-Y., Chen, J.-T., et al. (2011) Silica-Coated S2--Enriched Manganese-Doped ZnS Quantum Dots as a Photoluminescence Probe for Imaging Intracellular Zn2 Ions. Analytical Chemistry, 83, 8239-8244. https://doi.org/10.1021/ac202007u
[28]  Manzoor, K., Johny, S., Thomas, D., et al. (2009) Bio-Conjugated Luminescent Quantum Dots of Doped ZnS: A Cyto-Friendly System for Targeted Cancer Imaging. Nanotechnology, 20, Article 065102. https://doi.org/10.1088/0957-4484/20/6/065102

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133