全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

COVID-19 Vaccine: Review of the Mechanism of Action of Different Types of Vaccine

DOI: 10.4236/oalib.1108624, PP. 1-20

Subject Areas: Infectious Diseases, Clinical Medicine

Keywords: COVID-19, COVID-19 Vaccine, Vaccines, Immunization, Sars-CoV-2, COVID, Mechanism of Action

Full-Text   Cite this paper   Add to My Lib

Abstract

Since the discovery of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus in December 2019, it has spread rapidly affecting numerous people globally and World Health Organization (WHO) has declared a pandemic in March 2020. As cases of COVID-19 continue to rise daily, there are increasing concerns and controversies regarding the best methods to curb the coronavirus pandemic. Since there are no proven drugs that are completely effective for prevention or treatment of SARS-CoV-2, vaccines are considered to be the most favorable choice to control the spread of this disease and reduce severe morbidity and mortality from COVID-19. Therefore, this evidence-based intensive literature review aims to further identify and thoroughly understand the mechanisms of actions of the primary vaccines developed against the SARS-CoV-2, aiming to provide the latest information available on current COVID-19 vaccines, touching on the viral characteristics of SARS-CoV-2, vaccine development and platforms which may be beneficial to the advancing research of novel SARS-CoV-2 vaccines.

Cite this paper

Wong, L. , Yap, C. G. , Jahan, N. K. and Pillai, N. (2022). COVID-19 Vaccine: Review of the Mechanism of Action of Different Types of Vaccine. Open Access Library Journal, 9, e8624. doi: http://dx.doi.org/10.4236/oalib.1108624.

References

[1]  Triggle, C.R., Bansal, D., Ding, H., Islam, M.M., Farag, E., Hadi, H.A. and Sultan, A.A. (2021) A Comprehensive Review of Viral Characteristics, Transmission, Pathophysiology, Immune Response, and Management of SARS-CoV-2 and COVID-19 as a Basis for Controlling the Pandemic. Frontiers in Immunology, 12, Article ID: 631139. https://doi.org/10.3389/fimmu.2021.631139
[2]  Shi, Y., Wang, G., Cai, X.-P., Deng, J.-W., Zheng, L., Zhu, H.-H., et al. (2020) An Overview of COVID-19. Journal of Zhejiang University. Science B, 21, 343-360. https://doi.org/10.1631/jzus.B2000083
[3]  Wang, C., Horby, P.W., Hayden, F.G. and Gao, G.F. (2020) A Novel Coronavirus Outbreak of Global Health Concern. The Lancet, 395, 470-473. https://doi.org/10.1016/S0140-6736(20)30185-9
[4]  Andersen, K.G., Rambaut, A., Lipkin, W.I., Holmes, E.C. and Garry, R.F. (2020) The Proximal Origin of SARS-CoV-2. Nature Medicine, 26, 450-452. https://doi.org/10.1038/s41591-020-0820-9
[5]  Leclerc, Q., Fuller, N., Knight, L., Null, N., Funk, S. and Knight, G. (2020) What Settings Have Been Linked to SARS-CoV-2 Transmission Clusters? Welcome Open Research, 5, 83. https://doi.org/10.12688/wellcomeopenres.15889.2
[6]  van Doremalen, N., Bushmaker, T., Morris, D.H., Holbrook, M.G., Gamble, A., Williamson, B.N., et al. (2020) Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New England Journal of Medicine, 382, 1564-1567. https://doi.org/10.1056/NEJMc2004973
[7]  Zhou, Z., Zhao, N., Shu, Y., Han, S., Chen, B. and Shu, X. (2020) Effect of Gastrointestinal Symptoms in Patients with COVID-19. Gastroenterology, 158, 2294-2297. https://doi.org/10.1053/j.gastro.2020.03.020
[8]  Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., et al. (2020) Clinical Features of Patients Infected with 2019 Novel Coronavirus in Wuhan, China. The Lancet, 395, 497-506. https://doi.org/10.1016/S0140-6736(20)30183-5
[9]  Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M. and Mayhew, S. (2020) The COVID-19 Vaccine Development Landscape. Nature Reviews Drug Discovery, 19, 305-306. https://doi.org/10.1038/d41573-020-00073-5
[10]  WHO (2022) Draft Landscape of COVID-19 Candidate Vaccines. https://www.who.int/publications/m/item/draft-landscape-of-COVID-19-candidate-vaccines
[11]  Chen, N., Zhou, M., Dong, X., Qu, J., Gong, F., Han, Y., et al. (2020) Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. The Lancet, 395, 507-513. https://doi.org/10.1016/S0140-6736(20)30211-7
[12]  Kumar, S., Nyodu, R., Maurya, V.K. and Saxena, S.K. (2020) Morphology, Genome Organization, Replication, and Pathogenesis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). In: Saxena, S.K., Ed., Coronavirus Disease 2019 (COVID-19): Epidemiology, Pathogenesis, Diagnosis, and Therapeutics, Springer, Singapore, 23-31. https://doi.org/10.1007/978-981-15-4814-7_3
[13]  Forchette, L., Sebastian, W. and Liu, T. (2021) A Comprehensive Review of COVID-19 Virology, Vaccines, Variants, and Therapeutics. Current Medical Science, 41, 1037-1051. https://doi.org/10.1007/s11596-021-2395-1
[14]  Neuman, B.W., Adair, B.D., Yoshioka, C., Quispe, J.D., Orca, G., Kuhn, P., et al. (2006) Supramolecular Architecture of Severe Acute Respiratory Syndrome Coronavirus Revealed by Electron Cryomicroscopy. Journal of Virology, 80, 7918-7928. https://doi.org/10.1128/JVI.00645-06
[15]  Min, L. and Sun, Q. (2021) Antibodies and Vaccines Target RBD of SARS-CoV-2. Frontiers in Molecular Biosciences, 8, Article ID: 671633. https://doi.org/10.3389/fmolb.2021.671633
[16]  Wrapp, D., Wang, N., Corbett, K.S., Goldsmith, J.A., Hsieh, C.-L., Abiona, O., et al. (2020) Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science (New York, N.Y.), 367, 1260-1263. https://doi.org/10.1126/science.abb2507
[17]  Zang, R., Gomez Castro, M.F., McCune, B.T., Zeng, Q., Rothlauf, P.W., Sonnek, N.M., et al. (2020) TMPRSS2 and TMPRSS4 Promote SARS-CoV-2 Infection of Human Small Intestinal Enterocytes. Science Immunology, 5, eabc3582. https://doi.org/10.1126/sciimmunol.abc3582
[18]  Hartenian, E., Nandakumar, D., Lari, A., Ly, M., Tucker, J.M. and Glaunsinger, B.A. (2020) The Molecular Virology of Coronaviruses. The Journal of Biological Chemistry, 295, 12910-12934. https://doi.org/10.1074/jbc.REV120.013930
[19]  Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., et al. (2020) Characterization of Spike Glycoprotein of SARS-CoV-2 on Virus Entry and Its Immune Cross-Reactivity with SARS-CoV. Nature Communications, 11, Article No. 1620. https://doi.org/10.1038/s41467-020-15562-9
[20]  Sadarangani, M., Marchant, A. and Kollmann, T.R. (2021) Immunological Mechanisms of Vaccine-Induced Protection against COVID-19 in Humans. Nature Reviews Immunology, 21, 475-484. https://doi.org/10.1038/s41577-021-00578-z
[21]  Gudbjartsson, D.F., Norddahl, G.L., Melsted, P., Gunnarsdottir, K., Holm, H., Eythorsson, E., et al. (2020) Humoral Immune Response to SARS-CoV-2 in Iceland. The New England Journal of Medicine, 383, 1724-1734. https://doi.org/10.1056/NEJMoa2026116
[22]  Krammer, F. (2020) SARS-CoV-2 Vaccines in Development. Nature, 586, 516-527. https://doi.org/10.1038/s41586-020-2798-3
[23]  Ball, P. (2021) The Lightning-Fast Quest for COVID Vaccines and What It Means for Other Diseases. Nature, 589, 16-18. https://doi.org/10.1038/d41586-020-03626-1
[24]  Ghasemiyeh, P., Mohammadi-Samani, S., Firouzabadi, N., Dehshahri, A. and Vazin, A. (2021) A Focused Review on Technologies, Mechanisms, Safety, and Efficacy of Available COVID-19 Vaccines. International Immunopharmacology, 100, Article ID: 108162. https://doi.org/10.1016/j.intimp.2021.108162
[25]  Carvalho, T., Krammer, F. and Iwasaki, A. (2021) The First 12 Months of COVID-19: A Timeline of Immunological Insights. Nature Reviews Immunology, 21, 245-256. https://doi.org/10.1038/s41577-021-00522-1
[26]  Sharma, O., Sultan, A.A., Ding, H. and Triggle, C.R. (2020) A Review of the Progress and Challenges of Developing a Vaccine for COVID-19. Frontiers in Immunology, 11, Article ID: 585354. https://doi.org/10.3389/fimmu.2020.585354
[27]  Philadelphia, C. o. P. o. (2022) The History of Vaccines: Vaccine Development, Testing, and Regulation. https://www.historyofvaccines.org/content/articles/vaccine-development-testing-and-regulation
[28]  Randolph, H.E. and Barreiro, L.B. (2020) Herd Immunity: Understanding COVID-19. Immunity, 52, 737-741. https://doi.org/10.1016/j.immuni.2020.04.012
[29]  Jung, F., Krieger, V., Hufert, F.T. and Küpper, J.H. (2020) Herd Immunity or Suppression Strategy to Combat COVID-19. Clinical Hemorheology and Microcirculation, 75, 13-17. https://doi.org/10.3233/CH-209006
[30]  van Riel, D. and de Wit, E. (2020) Next-Generation Vaccine Platforms for COVID-19. Nature Materials, 19, 810-812. https://doi.org/10.1038/s41563-020-0746-0
[31]  Nagy, A. and Alhatlani, B. (2021) An Overview of Current COVID-19 Vaccine Platforms. Computational and Structural Biotechnology Journal, 19, 2508-2517. https://doi.org/10.1016/j.csbj.2021.04.061
[32]  Groenke, N., Trimpert, J., Merz, S., Conradie, A.M., Wyler, E., Zhang, H., et al. (2020) Mechanism of Virus Attenuation by Codon Pair Deoptimization. Cell Reports, 31, Article ID: 107586. https://doi.org/10.1016/j.celrep.2020.107586
[33]  Broadbent, A.J., Santos, C.P., Anafu, A., Wimmer, E., Mueller, S. and Subbarao, K. (2016) Evaluation of the Attenuation, Immunogenicity, and Efficacy of a Live Virus Vaccine Generated by Codon-Pair Bias De-Optimization of the 2009 Pandemic H1N1 Influenza Virus, in Ferrets. Vaccine, 34, 563-570. https://doi.org/10.1016/j.vaccine.2015.11.054
[34]  Frederiksen, L.S.F., Zhang, Y., Foged, C. and Thakur, A. (2020) The Long Road toward COVID-19 Herd Immunity: Vaccine Platform Technologies and Mass Immunization Strategies. Frontiers in Immunology, 11, Article No. 1817. https://doi.org/10.3389/fimmu.2020.01817
[35]  Platt, L.R., Estívariz, C.F. and Sutter, R.W. (2014) Vaccine-Associated Paralytic Poliomyelitis: A Review of the Epidemiology and Estimation of the Global Burden. The Journal of Infectious Diseases, 210, S380-S389. https://doi.org/10.1093/infdis/jiu184
[36]  Sumirtanurdin, R. and Barliana, M.I. (2020) Coronavirus Disease 2019 Vaccine Development: An Overview. Viral Immunology, 34, 134-144. https://doi.org/10.1089/vim.2020.0119
[37]  Chaudhary, J.K., Yadav, R., Chaudhary, P.K., Maurya, A., Kant, N., Rugaie, O.A., et al. (2021) Insights into COVID-19 Vaccine Development Based on Immunogenic Structural Proteins of SARS-CoV-2, Host Immune Responses, and Herd Immunity. Cells, 10, Article No. 2949. https://doi.org/10.3390/cells10112949
[38]  Gao, Q., Bao, L., Mao, H., Wang, L., Xu, K., Yang, M., et al. (2020) Development of an Inactivated Vaccine Candidate for SARS-CoV-2. Science (New York, N.Y.), 369, 77-81. https://doi.org/10.1126/science.abc1932
[39]  Awate, S., Babiuk, L.A. and Mutwiri, G. (2013) Mechanisms of Action of Adjuvants. Frontiers in Immunology, 4, Article No. 114. https://doi.org/10.3389/fimmu.2013.00114
[40]  He, Q., Mao, Q., Zhang, J., Bian, L., Gao, F., Wang, J., et al. (2021) COVID-19 Vaccines: Current Understanding on Immunogenicity, Safety, and Further Considerations. Frontiers in Immunology, 12, Article ID: 669339. https://doi.org/10.3389/fimmu.2021.669339
[41]  Croda, J. and Ranzani, O.T. (2021) Booster Doses for Inactivated COVID-19 Vaccines: If, When, and for Whom. The Lancet Infectious Diseases, 22, 430-432. https://doi.org/10.1016/S1473-3099(21)00696-4
[42]  Creech, C.B., Walker, S.C. and Samuels, R.J. (2021) SARS-CoV-2 Vaccines. JAMA, 325, 1318-1320. https://doi.org/10.1001/jama.2021.3199
[43]  Anand, U., Jakhmola, S., Indari, O., Jha, H.C., Chen, Z.-S., Tripathi, V. and Pérez de la Lastra, J.M. (2021) Potential Therapeutic Targets and Vaccine Development for SARS-CoV-2/COVID-19 Pandemic Management: A Review on the Recent Update. Frontiers in Immunology, 12, Article ID: 658519. https://doi.org/10.3389/fimmu.2021.658519
[44]  Sasso, E., D’Alise, A.M., Zambrano, N., Scarselli, E., Folgori, A. and Nicosia, A. (2020) New Viral Vectors for Infectious Diseases and Cancer. Seminars in Immunology, 50, Article ID: 101430. https://doi.org/10.1016/j.smim.2020.101430
[45]  Zhu, F.-C., Li, Y.-H., Guan, X.-H., Hou, L.-H., Wang, W.-J., Li, J.-X., et al. (2020) Safety, Tolerability, and Immunogenicity of a Recombinant Adenovirus Type-5 Vectored COVID-19 Vaccine: A Dose-Escalation, Open-Label, Non-Randomised, First-in-Human Trial. Lancet (London, England), 395, 1845-1854. https://doi.org/10.1016/S0140-6736(20)31208-3
[46]  Pandey, A., Singh, N., Vemula, S.V., Couëtil, L., Katz, J.M., Donis, R., et al. (2012) Impact of Preexisting Adenovirus Vector Immunity on Immunogenicity and Protection Conferred with an Adenovirus-Based H5N1 Influenza Vaccine. PLoS ONE, 7, e33428. https://doi.org/10.1371/journal.pone.0033428
[47]  Folegatti, P.M., Ewer, K.J., Aley, P.K., Angus, B., Becker, S., Belij-Rammerstorfer, S., et al. (2020) Safety and Immunogenicity of the ChAdOx1 nCoV-19 Vaccine against SARS-CoV-2: A Preliminary Report of a Phase 1/2, Single-Blind, Randomised Controlled Trial. The Lancet, 396, 467-478. https://doi.org/10.1016/S0140-6736(20)31604-4
[48]  Rodriguez-Coira, J. and Sokolowska, M. (2021) SARS-CoV-2 Candidate Vaccines—Composition, Mechanisms of Action and Stages of Clinical Development. Allergy, 76, 1922-1924. https://doi.org/10.1111/all.14714
[49]  Amanat, F., Stadlbauer, D., Strohmeier, S., Nguyen, T.H.O., Chromikova, V., McMahon, M., et al. (2020) A Serological Assay to Detect SARS-CoV-2 Seroconversion in Humans. Nature Medicine, 26, 1033-1036. https://doi.org/10.1038/s41591-020-0913-5
[50]  Zhang, N., Zheng, B.-J., Lu, L., Zhou, Y., Jiang, S. and Du, L. (2015) Advancements in the Development of Subunit Influenza Vaccines. Microbes and Infection, 17, 123-134. https://doi.org/10.1016/j.micinf.2014.12.006
[51]  Hafiz, I., Illian, D.N., Meila, O., Utomo, A.R.H., Susilowati, A., Susetya, I.E., et al. (2022) Effectiveness and Efficacy of Vaccine on Mutated SARS-CoV-2 Virus and Post Vaccination Surveillance: A Narrative Review. Vaccines, 10, 82. https://doi.org/10.3390/vaccines10010082
[52]  Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L. and Zou, Q. (2020) Progress and Prospects on Vaccine Development against SARS-CoV-2. Vaccines, 8, Article No. 153. https://doi.org/10.3390/vaccines8020153
[53]  Barnes, C.O., West, A.P., Huey-Tubman, K.E., Hoffmann, M.A.G., Sharaf, N.G., Hoffman, P.R., et al. (2020) Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal Common Epitopes and Recurrent Features of Antibodies. Cell, 182, 828-842.e816. https://doi.org/10.1016/j.cell.2020.06.025
[54]  Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S. and Zhou, Q. (2021) A Comprehensive Review of the Global Efforts on COVID-19 Vaccine Development. ACS Central Science, 7, 512-533. https://doi.org/10.1021/acscentsci.1c00120
[55]  Thames, A.H., Wolniak, K.L., Stupp, S.I. and Jewett, M.C. (2020) Principles Learned from the International Race to Develop a Safe and Effective COVID-19 Vaccine. ACS Central Science, 6, 1341-1347. https://doi.org/10.1021/acscentsci.0c00644
[56]  Chavda, V.P., Pandya, R. and Apostolopoulos, V. (2021) DNA Vaccines for SARS-CoV-2: Toward Third-Generation Vaccination Era. Expert Review of Vaccines, 20, 1549-1560. https://doi.org/10.1080/14760584.2021.1987223
[57]  Silveira, M.M., Moreira, G.M.S.G. and Mendonça, M. (2021) DNA Vaccines against COVID-19: Perspectives and Challenges. Life Sciences, 267, Article ID: 118919. https://doi.org/10.1016/j.lfs.2020.118919
[58]  Smith, T.R.F., Patel, A., Ramos, S., Elwood, D., Zhu, X., Yan, J., Broderick, K.E., et al. (2020) Immunogenicity of a DNA Vaccine Candidate for COVID-19. Nature Communications, 11, Article No. 2601. https://doi.org/10.1038/s41467-020-16505-0
[59]  Hobernik, D. and Bros, M. (2018) DNA Vaccines—How Far from Clinical Use? International Journal of Molecular Sciences, 19, Article No. 3605. https://doi.org/10.3390/ijms19113605
[60]  Pardi, N., Hogan, M.J., Porter, F.W. and Weissman, D. (2018) mRNA Vaccines—A New Era in Vaccinology. Nature Reviews Drug Discovery, 17, 261-279. https://doi.org/10.1038/nrd.2017.243
[61]  Jackson, N.A.C., Kester, K.E., Casimiro, D., Gurunathan, S. and DeRosa, F. (2020) The Promise of mRNA Vaccines: A Biotech and Industrial Perspective. NPJ Vaccines, 5, 11. https://doi.org/10.1038/s41541-020-0159-8
[62]  Huang, Q., Zeng, J. and Yan, J. (2021) COVID-19 mRNA Vaccines. Journal of Genetics and Genomics, 48, 107-114. https://doi.org/10.1016/j.jgg.2021.02.006
[63]  Zhang, C., Maruggi, G., Shan, H. and Li, J. (2019) Advances in mRNA Vaccines for Infectious Diseases. Frontiers in Immunology, 10, Article No. 594. https://doi.org/10.3389/fimmu.2019.00594
[64]  Brisse, M., Vrba, S.M., Kirk, N., Liang, Y. and Ly, H. (2020) Emerging Concepts and Technologies in Vaccine Development. Frontiers in Immunology, 11, Article ID: 583077. https://doi.org/10.3389/fimmu.2020.583077
[65]  Schoenmaker, L., Witzigmann, D., Kulkarni, J.A., Verbeke, R., Kersten, G., Jiskoot, W. and Crommelin, D.J.A. (2021) mRNA-Lipid Nanoparticle COVID-19 Vaccines: Structure and Stability. International Journal of Pharmaceutics, 601, Article ID: 120586. https://doi.org/10.1016/j.ijpharm.2021.120586
[66]  Vogel, A.B., Kanevsky, I., Che, Y., Swanson, K.A., Muik, A., Vormehr, M., et al. (2021) BNT162b Vaccines Protect Rhesus Macaques from SARS-CoV-2. Nature, 592, 283-289. https://doi.org/10.1038/s41586-021-03275-y
[67]  Xiong, X., Qu, K., Ciazynska, K.A., Hosmillo, M., Carter, A.P., Ebrahimi, S., et al. (2020) A Thermostable, Closed SARS-CoV-2 Spike Protein Trimer. Nature Structural & Molecular Biology, 27, 934-941. https://doi.org/10.1038/s41594-020-0478-5
[68]  Bettini, E. and Locci, M. (2021) SARS-CoV-2 mRNA Vaccines: Immunological Mechanism and Beyond. Vaccines, 9, 147. https://doi.org/10.3390/vaccines9020147
[69]  Pardi, N., Tuyishime, S., Muramatsu, H., Kariko, K., Mui, B.L., Tam, Y.K., et al. (2015) Expression Kinetics of Nucleoside-Modified mRNA Delivered in Lipid Nanoparticles to Mice by Various Routes. Journal of Controlled Release, 217, 345-351. https://doi.org/10.1016/j.jconrel.2015.08.007
[70]  Kulkarni, J.A., Witzigmann, D., Chen, S., Cullis, P.R. and van der Meel, R. (2019) Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics. Accounts of Chemical Research, 52, 2435-2444. https://doi.org/10.1021/acs.accounts.9b00368
[71]  Park, J.W., Lagniton, P.N.P., Liu, Y. and Xu, R.-H. (2021) mRNA Vaccines for COVID-19: What, Why and How. International Journal of Biological Sciences, 17, 1446-1460. https://doi.org/10.7150/ijbs.59233
[72]  Liang, F., Lindgren, G., Lin, A., Thompson, E.A., Ols, S., Röhss, J., et al. (2017) Efficient Targeting and Activation of Antigen-Presenting Cells in Vivo after Modified mRNA Vaccine Administration in Rhesus Macaques. Molecular Therapy, 25, 2635-2647. https://doi.org/10.1016/j.ymthe.2017.08.006
[73]  Laczkó, D., Hogan, M.J., Toulmin, S.A., Hicks, P., Lederer, K., Gaudette, B.T., et al. (2020) A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice. Immunity, 53, 724-732.e727. https://doi.org/10.1016/j.immuni.2020.07.019
[74]  Polack, F.P., Thomas, S.J., Kitchin, N., Absalon, J., Gurtman, A., Lockhart, S., et al. (2020) Safety and Efficacy of the BNT162b2 mRNA COVID-19 Vaccine. The New England Journal of Medicine, 383, 2603-2615. https://doi.org/10.1056/NEJMoa2034577
[75]  Frenck, R.W., Klein, N.P., Kitchin, N., Gurtman, A., Absalon, J., Lockhart, S., et al. (2021) Safety, Immunogenicity, and Efficacy of the BNT162b2 COVID-19 Vaccine in Adolescents. The New England Journal of Medicine, 385, 239-250. https://doi.org/10.1056/NEJMoa2107456
[76]  Walsh, E.E., Frenck, R.W., Falsey, A.R., Kitchin, N., Absalon, J., Gurtman, A., et al. (2020) Safety and Immunogenicity of Two RNA-Based COVID-19 Vaccine Candidates. The New England Journal of Medicine, 383, 2439-2450. https://doi.org/10.1056/NEJMoa2027906
[77]  Team, C.C.-R., Food and Drug, A. (2021) Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine—United States, December 14-23, 2020. MMWR. Morbidity and Mortality Weekly Report, 70, 46-51. https://doi.org/10.15585/mmwr.mm7002e1
[78]  Shimabukuro, T. and Nair, N. (2021) Allergic Reactions Including Anaphylaxis after Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine. JAMA, 325, 780-781. https://doi.org/10.1001/jama.2021.0600
[79]  Verma, A.K., Lavine, K.J. and Lin, C.-Y. (2021) Myocarditis after COVID-19 mRNA Vaccination. The New England Journal of Medicine, 385, 1332-1334. https://doi.org/10.1056/NEJMc2109975
[80]  Kaur, S.P. and Gupta, V. (2020) COVID-19 Vaccine: A Comprehensive Status Report. Virus Research, 288, Article ID: 198114. https://doi.org/10.1016/j.virusres.2020.198114
[81]  Alturki, S.O., Alturki, S.O., Connors, J., Cusimano, G., Kutzler, M.A., Izmirly, A.M. and Haddad, E.K. (2020) The 2020 Pandemic: Current SARS-CoV-2 Vaccine Development. Frontiers in Immunology, 11, Article No. 1880. https://doi.org/10.3389/fimmu.2020.01880
[82]  Ewer, K.J., Barrett, J.R., Belij-Rammerstorfer, S., Sharpe, H., Makinson, R., Morter, R., et al. (2021) T Cell and Antibody Responses Induced by a Single Dose of ChAdOx1 nCoV-19 (AZD1222) Vaccine in a Phase 1/2 Clinical Trial. Nature Medicine, 27, 270-278. https://doi.org/10.1038/s41591-020-01194-5
[83]  van Doremalen, N., Lambe, T., Spencer, A., Belij-Rammerstorfer, S., Purushotham, J.N., Port, J.R., et al. (2020) ChAdOx1 nCoV-19 Vaccine Prevents SARS-CoV-2 Pneumonia in Rhesus Macaques. Nature, 586, 578-582. https://doi.org/10.1038/s41586-020-2608-y
[84]  Voysey, M., Clemens, S.A.C., Madhi, S.A., Weckx, L.Y., Folegatti, P.M., Aley, P.K., et al. (2021) Safety and Efficacy of the ChAdOx1 nCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. The Lancet (London, England), 397, 99-111. https://doi.org/10.1016/S0140-6736(20)32661-1
[85]  Knoll, M.D. and Wonodi, C. (2021) Oxford-AstraZeneca COVID-19 Vaccine Efficacy. The Lancet, 397, 72-74. https://doi.org/10.1016/S0140-6736(20)32623-4
[86]  Hviid, A., Hansen, J.V., Thiesson, E.M. and Wohlfahrt, J. (2022) Association of AZD1222 and BNT162b2 COVID-19 Vaccination with Thromboembolic and Thrombocytopenic Events in Frontline Personnel: A Retrospective Cohort Study. Annals of Internal Medicine, M21-2452. https://doi.org/10.7326/M21-2452
[87]  Cines, D.B. and Bussel, J.B. (2021) SARS-CoV-2 Vaccine-Induced Immune Thrombotic Thrombocytopenia. The New England Journal of Medicine, 384, 2254-2256. https://doi.org/10.1056/NEJMe2106315
[88]  Dotan, A. and Shoenfeld, Y. (2021) Perspectives on Vaccine Induced Thrombotic Thrombocytopenia. Journal of Autoimmunity, 121, Article ID: 102663. https://doi.org/10.1016/j.jaut.2021.102663
[89]  Greinacher, A., Thiele, T., Warkentin, T.E., Weisser, K., Kyrle, P.A. and Eichinger, S. (2021) Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. New England Journal of Medicine, 384, 2092-2101. https://doi.org/10.1056/NEJMoa2104840
[90]  Di Micco, P., Camporese, G., Cardillo, G., Lodigiani, C., Carannante, N., Annunziata, A., et al. (2021) Pathophysiology of Vaccine-Induced Prothrombotic Immune Thrombocytopenia (Vipit) and Vaccine-Induced Thrombocytopenic Thrombosis (vitt) and Their Diagnostic Approach in Emergency. Medicina (Lithuania), 57, Article No. 997. https://doi.org/10.3390/medicina57100997
[91]  Scully, M., Singh, D., Lown, R., Poles, A., Solomon, T., Levi, M., et al. (2021) Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 nCoV-19 Vaccination. New England Journal of Medicine, 384, 2202-2211. https://doi.org/10.1056/NEJMoa2105385
[92]  Nazy, I., Jevtic, S.D., Moore, J.C., Huynh, A., Smith, J.W., Kelton, J.G. and Arnold, D.M. (2021) Platelet-Activating Immune Complexes Identified in Critically Ill COVID-19 Patients Suspected of Heparin-Induced Thrombocytopenia. Journal of Thrombosis and Haemostasis, 19, 1342-1347. https://doi.org/10.1111/jth.15283
[93]  Ciccone, A. (2021) SARS-CoV-2 Vaccine-Induced Cerebral Venous Thrombosis. European Journal of Internal Medicine, 89, 19-21. https://doi.org/10.1016/j.ejim.2021.05.026
[94]  Zieneldien, T., Kim, J., Cao, J. and Cao, C. (2021) COVID-19 Vaccines: Current Conditions and Future Prospects. Biology, 10, Article No. 960. https://doi.org/10.3390/biology10100960
[95]  Fadlyana, E., Rusmil, K., Tarigan, R., Rahmadi, A.R., Prodjosoewojo, S., Sofiatin, Y., et al. (2021) A Phase III, Observer-Blind, Randomized, Placebo-Controlled Study of the Efficacy, Safety, and Immunogenicity of SARS-CoV-2 Inactivated Vaccine in Healthy Adults Aged 18-59 Years: An Interim Analysis in Indonesia. Vaccine, 39, 6520-6528. https://doi.org/10.1016/j.vaccine.2021.09.052
[96]  Tanriover, M.D., Do?anay, H.L., Akova, M., Güner, H.R., Azap, A., Akhan, S., et al. (2021) Efficacy and Safety of an Inactivated Whole-Virion SARS-CoV-2 Vaccine (CoronaVac): Interim Results of a Double-Blind, Randomised, Placebo-Controlled, Phase 3 Trial in Turkey. The Lancet, 398, 213-222. https://doi.org/10.1016/S0140-6736(21)01429-X
[97]  Hitchings, M.D.T., Ranzani, O.T., Torres, M.S.S., de Oliveira, S.B., Almiron, M., Said, R., et al. (2021) Effectiveness of CoronaVac among Healthcare Workers in the Setting of High SARS-CoV-2 Gamma Variant Transmission in Manaus, Brazil: A Test-Negative Case-Control Study. The Lancet Regional Health Americas. https://doi.org/10.1016/j.lana.2021.100025
[98]  Zhang, Y., Zeng, G., Pan, H., Li, C., Hu, Y., Chu, K., et al. (2021) Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine in Healthy Adults Aged 18-59 Years: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Clinical Trial. The Lancet Infectious Diseases, 21, 181-192. https://doi.org/10.1016/S1473-3099(20)30843-4
[99]  Wu, Z., Hu, Y., Xu, M., Chen, Z., Yang, W., Jiang, Z., et al. (2021) Safety, Tolerability, and Immunogenicity of an Inactivated SARS-CoV-2 Vaccine (CoronaVac) in Healthy Adults Aged 60 Years and Older: A Randomised, Double-Blind, Placebo-Controlled, Phase 1/2 Clinical Trial. The Lancet Infectious Diseases, 21, 803-812. https://doi.org/10.1016/S1473-3099(20)30987-7
[100]  Bueno, S.M., Abarca, K., González, P.A., Gálvez, N.M.S., Soto, J.A., Duarte, L.F., et al. (2021) Safety and Immunogenicity of an Inactivated Severe Acute Respiratory Syndrome Coronavirus 2 Vaccine in a Subgroup of Healthy Adults in Chile. Clinical Infectious Diseases, ciab823. https://doi.org/10.1093/cid/ciab823
[101]  Pulendran, B. and Ahmed, R. (2011) Immunological Mechanisms of Vaccination. Nature Immunology, 12, 509-517. https://doi.org/10.1038/ni.2039
[102]  Lee, W.S., Wheatley, A.K., Kent, S.J. and DeKosky, B.J. (2020) Antibody-Dependent Enhancement and SARS-CoV-2 Vaccines and Therapies. Nature Microbiology, 5, 1185-1191. https://doi.org/10.1038/s41564-020-00789-5
[103]  Wang, S.F., Tseng, S.P., Yen, C.H., Yang, J.Y., Tsao, C.H., Shen, C.W., et al. (2014) Antibody-Dependent SARS Coronavirus Infection Is Mediated by Antibodies against Spike Proteins. Biochemical and Biophysical Research Communications, 451, 208-214. https://doi.org/10.1016/j.bbrc.2014.07.090
[104]  Xu, L., Ma, Z., Li, Y., Pang, Z. and Xiao, S. (2021) Antibody Dependent Enhancement: Unavoidable Problems in Vaccine Development. Advances in Immunology, 151, 99-133. https://doi.org/10.1016/bs.ai.2021.08.003
[105]  Halstead, S.B. (2021) Vaccine-Associated Enhanced Viral Disease: Implications for Viral Vaccine Development. BioDrugs: Clinical Immunotherapeutics, Biopharmaceuticals and Gene Therapy, 35, 505-515. https://doi.org/10.1007/s40259-021-00495-6

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413