The scientific work of Charles-Augustin de Coulomb has transcended as a significant contribution to explain phenomena in nature and generate crucial technological development in recent daily activities. We used Coulomb’s law to calculate the changes generated in the electrostatic interactions of residue 614 of SARS-CoV-2 Spike protein when the D614G mutation occurs. We made a physical analysis of the transformation and the biological implications in the whole molecule’s structural stability, obtaining that a greater electronegativity of the mutation stage favors the open state of Spike, which is manifested as a greater efficiency to bind to the ACE2 human receptor.
References
[1]
Boswell, C. A., Tesar, D. B., Mukhyala, K., Theil, F.-P., Fielder, P. J., & Khawli, L. A. (2010). Effects of Charge on Antibody Tissue Distribution and Pharmacokinetics. Bioconjugate Chemistry, 21, 2153-2163. https://doi.org/10.1021/bc100261d
[2]
Bremer, M. G. E. G., Duval, J., Norde, W., & Lyklema, J. (2004). Electrostatic Interactions between Immunoglobulin (IgG) Molecules and a Charged Sorbent. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 250, 29-42.
https://doi.org/10.1016/j.colsurfa.2004.05.026
[3]
Coulomb, C. A. (1785). Premier mémoire sur l’électricité et le magnétisme. Histoire de l’Académie Royale Des Sciences, 569-577.
[4]
Fernández, A. (2020). Structural Impact of Mutation D614G in SARS-CoV-2 Spike Protein: Enhanced Infectivity and Therapeutic Opportunity. ACS Medicinal Chemistry Letters, 11, 1667-1670. https://doi.org/10.1021/acsmedchemlett.0c00410
[5]
Gobeil, S. M.-C., Janowska, K., McDowell, S., Mansouri, K., Parks, R., Manne, K., Stalls, V., Kopp, M. F., Henderson, R., Edwards, R. J., Haynes, B. F., & Acharya, P. (2021). D614G Mutation Alters SARS-CoV-2 Spike Conformation and Enhances Protease Cleavage at the S1/S2 Junction. Cell Reports, 34, Article ID: 108630.
https://doi.org/10.1016/j.celrep.2020.108630
[6]
Goher, S. S., Ali, F., & Amin, M. (2022). The Delta Variant Mutations in the Receptor Binding Domain of SARS-CoV-2 Show Enhanced Electrostatic Interactions with the ACE2. Medicine in Drug Discovery, 13, Article ID: 100114.
https://doi.org/10.1016/j.medidd.2021.100114
[7]
Hanoian, P., Liu, C. T., Hammes-Schiffer, S., & Benkovic, S. (2015). Perspectives on Electrostatics and Conformational Motions in Enzyme Catalysis. Accounts of Chemical Research, 48, 482-489. https://doi.org/10.1021/ar500390e
[8]
Ishikawa, T., Ozono, H., Akisawa, K., Hatada, R., Okuwaki, K., & Mochizuki, Y. (2021). Interaction Analysis on the SARS-CoV-2 Spike Protein Receptor Binding Domain Using Visualization of the Interfacial Electrostatic Complementarity. The Journal of Physical Chemistry Letters, 12, 11267-11272.
https://doi.org/10.1021/acs.jpclett.1c02788
[9]
Koenig, P.-A., & Schmidt, F. I. (2021). Spike D614G—A Candidate Vaccine Antigen against Covid-19. New England Journal of Medicine, 384, 2349-2351.
https://doi.org/10.1056/NEJMcibr2106054
[10]
Laskowski, R. A., Gerick, F., & Thornton, J. M. (2009). The Structural Basis of Allosteric Regulation in Proteins. FEBS Letters, 583, 1692-1698.
https://doi.org/10.1016/j.febslet.2009.03.019
[11]
Mansbach, R. A., Chakraborty, S., Nguyen, K., Montefiori, D. C., Korber, B., & Gnanakaran, S. (2022). The SARS-CoV-2 Spike Variant D614G Favors an Open Conformational State. Science Advances, 7, eabf3671. https://doi.org/10.1126/sciadv.abf3671
[12]
Nakamura, H. (1996). Roles of Electrostatic Interaction in Proteins. Quarterly Reviews of Biophysics, 29, 1-90. https://doi.org/10.1017/S0033583500005746
[13]
Nguyen, H., Lan, P. D., Nissley, D. A., O’Brien, E. P., & Li, M. S. (2021). Electrostatic Interactions Explain the Higher Binding Affinity of the CR3022 Antibody for SARS-CoV-2 than the 4A8 Antibody. The Journal of Physical Chemistry B, 125, 7368-7379.
https://doi.org/10.1021/acs.jpcb.1c03639
[14]
Oostenbrink, C., Villa, A., Mark, A. E., & van Gunsteren, W. F. (2004). A Biomolecular Force Field Based on the Free Enthalpy of Hydration and Solvation: The GROMOS Force-Field Parameter Sets 53A5 and 53A6. Journal of Computational Chemistry, 25, 1656-1676. https://doi.org/10.1002/jcc.20090
[15]
Osorio-González, D., Muniz-Orozco, V. J., González, C. P., Fuentes-Acosta, M., Mulia- Rodríguez, J., & Mandujano-Rosas, L. A. (2021). Receptor Binding Domain (RBD) Structural Susceptibility in the SARS-CoV-2 Virus Spike Protein Exposed to a Pulsed Electric Field. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 8, 177-182. https://doi.org/10.15415/jnp.2021.82023
[16]
Pena-Negrete, C., Fuentes-Acosta, M. A., Mulia, J., Mandujano-Rosas, L. A., & Osorio- Gonzalez, D. (2020). Structural Variations Induced by Temperature Changes in Rotavirus VP6 Protein Immersed in an Electric Field and Their Effects on Epitopes of the Region 300-396. Journal of Nuclear Physics, Material Sciences, Radiation and Applications, 7, 189-194. https://doi.org/10.15415/jnp.2020.72024
[17]
Plante, J. A., Liu, Y., Liu, J., Xia, H., Johnson, B. A., Lokugamage, K. G., Zhang, X., Muruato, A. E., Zou, J., Fontes-Garfias, C. R., Mirchandani, D., Scharton, D., Bilello, J. P., Ku, Z., An, Z., Kalveram, B., Freiberg, A. N., Menachery, V. D., Xie, X., Plante, K. S., Weaver, S. C., & Shi, P.-Y. (2021). Spike Mutation D614G Alters SARS-CoV-2 Fitness. Nature, 592, 116-121. https://doi.org/10.1038/s41586-020-2895-3
[18]
Sheinerman, F. B., Norel, R., & Honig, B. (2000). Electrostatic Aspects of Protein-Protein Interactions. Current Opinion in Structural Biology, 10, 153-159.
https://doi.org/10.1016/S0959-440X(00)00065-8
[19]
Takeda, M. (2022). Proteolytic Activation of SARS-CoV-2 Spike Protein. Microbiology and Immunology, 66, 15-23. https://doi.org/10.1111/1348-0421.12945
[20]
Voet, A., Berenger, F., & Zhang, K. Y. J. (2013). Electrostatic Similarities between Protein and Small Molecule Ligands Facilitate the Design of Protein-Protein Interaction Inhibitors. PLOS ONE, 8, e75762. https://doi.org/10.1371/journal.pone.0075762
[21]
Walls, A. C., Park, Y.-J., Tortorici, M. A., Wall, A., McGuire, A. T., & Veesler, D. (2020). Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181, 281-292. https://doi.org/10.1016/j.cell.2020.02.058
[22]
Warshel, A., & Russell, S. T. (1984). Calculations of Electrostatic Interactions in Biological Systems and in Solutions. Quarterly Reviews of Biophysics, 17, 283-422.
https://doi.org/10.1017/S0033583500005333
[23]
Weissman, D., Alameh, M.-G., de Silva, T., Collini, P., Hornsby, H., Brown, R., LaBranche, C. C., Edwards, R. J., Sutherland, L., Santra, S., Mansouri, K., Gobeil, S., McDanal, C., Pardi, N., Hengartner, N., Lin, P. J. C., Tam, Y., Shaw, P. A., Lewis, M. G. et al. (2021). D614G Spike Mutation Increases SARS CoV-2 Susceptibility to Neutralization. Cell Host & Microbe, 29, 23-31. https://doi.org/10.1016/j.chom.2020.11.012
[24]
Yurkovetskiy, L., Wang, X., Pascal, K. E., Tomkins-Tinch, C., Nyalile, T. P., Wang, Y., Baum, A., Diehl, W. E., Dauphin, A., Carbone, C., Veinotte, K., Egri, S. B., Schaffner, S. F., Lemieux, J. E., Munro, J. B., Rafique, A., Barve, A., Sabeti, P. C., Kyratsous, C. A. et al. (2020). Structural and Functional Analysis of the D614G SARS-CoV-2 Spike Protein Variant. Cell, 183, 739-751. https://doi.org/10.1016/j.cell.2020.09.032
[25]
Zhang, J., Cai, Y., Xiao, T., Lu, J., Peng, H., Sterling, S. M., Walsh, R. M., Rits-Volloch, S., Zhu, H., Woosley, A. N., Yang, W., Sliz, P., & Chen, B. (2021). Structural Impact on SARS-CoV-2 Spike Protein by D614G Substitution. Science, 372, 525-530.
https://doi.org/10.1126/science.abf2303
[26]
Zhou, H.-X., & Pang, X. D. (2018). Electrostatic Interactions in Protein Structure, Folding, Binding, and Condensation. Chemical Reviews, 118, 1691-1741.
https://doi.org/10.1021/acs.chemrev.7b00305