全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Synthesis and Characterization of Zinc Oxide and Zinc Oxide Doped with Chlorine Nanoparticles as Novel α-Amylase Inhibitors

DOI: 10.4236/fns.2021.123024, PP. 308-318

Keywords: Zinc Oxide Nanoparticles, Zinc Oxide Nanoparticles Doped with Chlorine, Crystallinity, Anti-Diabetic Activity, α-Amylase Inhibitors

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this study we used a chemical solution method from oxalic acid (OX. acid) and zinc acetate (ZnAc) to prepare Zinc Oxide nanoparticles (ZnONPs) and Zinc Oxide nanoparticles doped with Chlorine (Cl:ZnONPs). The characterizations (FTIR, X-ray, SEM, TEM) of ZnONPs and Cl:ZnONPs were determined. Amylase inhibitors of ZnONPs and Cl:ZnONPs also were determined. SEM indicated that the ZnONPs and Cl:ZnONPs have an average particle size of 46.65 - 74.64 nm. TEM images of the ZnONPs and Cl:ZnONPs showed the round shaped. Compounds b, d and e exhibited significant inhibitory activity against amylase enzyme (from 69.21 ± 1.44 to 76.32 ± 0.78), respectively, and were comparable with that of acarbose (86.32 ± 0.63) at 1000 μg, thereby, projecting ZnONPs and Cl:ZnONPs as α-amylase inhibitors.

References

[1]  Zhang, J., Yu, W.Y. and Zhang, L.D. (2002) Fabrication of Semiconducting ZnO Nanobelts Using a Halide Source and Their Photoluminescence Properties. Physics Letters A, 299, 276-281.
https://doi.org/10.1016/S0375-9601(02)00622-9
[2]  Chen, Y.X., Zhao, X.Q. and Chen, J.H. (2008) Stacking Fault Directed Growth of Thin ZnO Nanobelt. Materials Letters, 62, 2369-2371.
https://doi.org/10.1016/j.matlet.2007.12.004
[3]  Sun, T.J., Qiu, J.S. and Liang, C.G. (2008) Controllable Fabrication and Photocatalytic Activity of ZnO Nanobelt Arrays. The Journal of Physical Chemistry C, 112, 715-721.
https://doi.org/10.1021/jp710071f
[4]  Cao, B.Q., Teng, X.M., Heo, S.H., Li, Y., Cho, S.O., Li, G.H. and Cai, W.P. (2007) Different ZnO Nanostructures Fabricated by a Seed-Layer Assisted Electrochemical Route and Their Photoluminescence and Field Emission Properties. The Journal of Physical Chemistry C, 111, 2470-2476.
https://doi.org/10.1021/jp066661l
[5]  Kong, X.Y., Ding, K. and Wang, Z.L. (2004) Metal-Semiconductor Zn-ZnO Core-Shell Nanobelts and Nanotubes. The Journal of Physical Chemistry C, 108, 570-574.
https://doi.org/10.1021/jp036993f
[6]  Reynolds, D.C., Look, D.C., Jogai, B., Hoelscher, J.E., Sherriff, R.E., Harris, M.T. and Callahan, M.J. (2000) Time-Resolved Photoluminescence Lifetime Measurements of the Γ5 and Γ6 Free Excitons in ZnO. Journal of Applied Physics, 88, Article No. 2152.
https://doi.org/10.1063/1.1305546
[7]  Kalpana, D., Omkumar, K.S., Kumar, S.S. and Renganathan, N.G. (2006) A Novel High Power Symmetric ZnO/Carbon Aerogel Composite Electrode for Electrochemical Supercapacitor. Electrochimica Acta, 52, 1309-1315.
https://doi.org/10.1016/j.electacta.2006.07.032
[8]  Sobana, N., Muruganandam, M. and Swaminathan, M. (2008) Characterization of Ac-ZnO Catalyst and Its Photocatalytic Activity on 4-Acetylphenol Degradation. Catalysis Communications, 9, 262-268.
https://doi.org/10.1016/j.catcom.2007.04.040
[9]  Sobana, N. and Swaminathan, M. (2007) Combination Effect of ZnO and Activated Carbon for Solar Assisted Photocatalytic Degradation of Direct Blue 53. Solar Energy Materials and Solar Cells, 91, 727-734.
https://doi.org/10.1016/j.solmat.2006.12.013
[10]  Byrappa, K., Subramani, A.K., Ananda, S., Lokanatharai, K.M., Suntha, M.H., Basavalingu, B. and Soga, K. (2006) Impregnation of ZnO onto Activated Carbon under Hydrothermal Conditions and Its Photocatalytic Properties. Journal of Materials Science, 41, 1355-1362.
https://doi.org/10.1007/s10853-006-7341-x
[11]  Jayalakshmi, M., Palaniappa, M. and Balasubramanian, K. (2008) Single Step Solution Combustion Synthesis of ZnO/Carbon Composite and Its Electrochemical Characterization for Supercapacitor Application. International Journal of Electrochemical Science, 3, 96-103.
[12]  Sadollahkhani, A., Kazeminezhad, I., Lu, J., Nur, O., Hultman L. and Willander, M. (2014) Synthesis, Structural Characterization and Photocatalytic Application of ZnO@ZnS Core-Shell Nanoparticles. RSC Advances, 4, 36940-36950.
https://doi.org/10.1039/C4RA05247A
[13]  Reiss, P., Protiere, M. and Li, L. (2009) Core/Shell Semiconductor Nanocrystals. Small, 5, 154-168.
https://doi.org/10.1002/smll.200800841
[14]  Zeng, Z., Garoufalis, C.S., Terzis, A.F. and Baskoutas, S. (2013) Linear and Nonlinear Optical Properties of ZnO/ZnS and ZnS/ZnO Core Shell Quantum Dots: Effects of Shell Thickness, Impurity, and Dielectric Environment. Journal of Applied Physics, 114, Article ID: 23510.
https://doi.org/10.1063/1.4813094
[15]  Zhai, J., Tao, X., Pu, Y., Zeng, X.F. and Chen, J.F. (2010) Structured ZnO/SiO2 Nanoparticles: Preparation, Characterization and Photocatalytic Property. Applied Surface Science, 257, 393-397.
https://doi.org/10.1016/j.apsusc.2010.06.091
[16]  Sahare, S., Dhoble, S.J., Singh, P. and Ramrakhiani, M. (2013) Fabrication of ZnS:Cu/PVA Nanocomposite Electroluminescence Devices for Flat Panel Displays. Advanced Materials Letter, 4, 169-173.
https://doi.org/10.5185/amlett.2012.6374
[17]  Roychowdhury, A., Pati, S.P., Kumar, S. and Das, D. (2014) Effects of Magnetite Nanoparticles on Optical Properties of Zinc Sulfide in Fluorescent-Magnetic Fe3O4/ZnS Nanocomposites. Powder Technology, 254, 583-590.
https://doi.org/10.1016/j.powtec.2014.01.076
[18]  Gonzalez-Hernandez, R., Martinez, A.I., Falcny, C.A., Lopez, A., Pech-Canul, M.I. and Hdz-Garcia, H.M. (2010) Study of the Properties of Undoped and Fluorine Doped Zinc Oxide Nanoparticles. Materials Letters, 64, 1493-1495.
https://doi.org/10.1016/j.matlet.2010.04.001
[19]  Franco, O.L., Rigden, D.J., Melo, F.R., Bloch Jr., C., Silva, C.P. and Grossi de Sá, M.F. (2000) Activity of Wheat α-Amylase Inhibitors towards Bruchid α-Amylases and Structural Explanation of Observed Specificities. European Journal of Biochemistry, 267, 2166-2173.
https://doi.org/10.1046/j.1432-1327.2000.01199.x
[20]  Khan, R., Kaushik, A., Solanki, P.R., Ansari, A.A., Pandey, M.K. and Malhotra, B.D. (2008) Zinc Oxide Nanoparticles-Chitosan Composite Film for Cholesterol Biosensor. Analytica Chimica Acta, 616, 207-213.
https://doi.org/10.1016/j.aca.2008.04.010
[21]  Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. and Punnoose, A. (2007) Selective Toxicity of Zinc Oxide Nanoparticles to Prokaryotic and Eukaryotic Systems. Applied Physics Letters, 90, Article ID: 213902.
https://doi.org/10.1063/1.2742324
[22]  Szabo, J., Hegedus, M., Bruckner, G., Kosa, E., Andrasofszky, E. and Berta, E. (2004) Large Doses of Zinc Oxide Increases the Activity of Hydrolases in Rats. The Journal of Nutritional Biochemistry, 15, 206-209.
https://doi.org/10.1016/j.jnutbio.2003.09.005
[23]  Bárcena, C., Sra, A.K., Chaubey, G.S., Khemtong, C., Liu, J.P. and Gao, J. (2008) Zinc Ferrite Nanoparticles as MRI Contrast Agents. Chemical Communications, 19, 2224-2226.
https://doi.org/10.1039/b801041b
[24]  Xiong, H.M., Xu, Y., Ren, Q.G. and Xia, Y.Y. (2008) Stable Aqueous ZnO@Polymer Core-Shell Nanoparticles with Tunable Photoluminescence and Their Application in Cell Imaging. Journal of the American Chemical Society, 130, 7522-7523.
https://doi.org/10.1021/ja800999u
[25]  Das, D., Nath, B.C., Phukon, P., Kalita, A. and Dolui, S.K. (2013) Synthesis of ZnO Nanoparticles and Evaluation of Antioxidant and Cytotoxic Activity. Colloids and Surfaces B: Biointerfaces, 111, 556-560.
https://doi.org/10.1016/j.colsurfb.2013.06.041
[26]  Wang, C., Zhang, W.X., Qian, X.F., Zhang, X.M., Xie, Y. and Qian, Y.T. (1999) A Room Temperature Chemical Route to Nanocrystalline PbS Semiconductor. Materials Letters, 40, 255-258.
https://doi.org/10.1016/S0167-577X(99)00085-3
[27]  Nagajyothi, P.C., Cha, S.J., Yang, I.J., Sreekanth, T.V.M., Kim, K.J. and Shin, H.M. (2015) Antioxidant and Anti-Inflammatory Activities of Zinc Oxide Nanoparticles Synthesized Using Polygala tenuifolia Root Extract. Journal of Photochemistry and Photobiology B: Biology, 146, 10-17.
https://doi.org/10.1016/j.jphotobiol.2015.02.008
[28]  Funke, I. and Melzig, M.F. (2006) Traditionally Used Plants in Diabetes Therapy—Phytotherapeutics as Inhibitors of a-Amylase Activity. Revista Brasileira de Farmacognosia, 16, 1-5.
https://doi.org/10.1590/S0102-695X2006000100002
[29]  Abd El-Rahman, S.N., Reda, S.M. and Al Ghannam, S.M. (2016) Synthesis and Characterization of Nano-Doped Zinc Oxide and Its Application as Protective Oxidative Changes in the Retina of Diabetic Rats. Journal of Diabetes & Metabolism, 7, Article No. 691.
https://doi.org/10.4172/2155-6156.1000691
[30]  Ansari, N.H., Zhang, W., Fulep, E. and Mansour, A. (1998) Prevention of Pericyte loss by Trolox in Diabetic Rat Retina. Journal of Toxicology and Environmental Health, Part A, 54, 467-475.
https://doi.org/10.1080/009841098158755
[31]  El Saeed, A.M., Abd El-Fattah, M. and Azzam, A.M. (2015) Synthesis of ZnO Nanoparticles and Studying Its Influence on the Antimicrobial, Anticorrosion and Mechanical Behavior of Polyurethane Composite for Surface Coating. Dyes and Pigments, 121, 282-289.
https://doi.org/10.1016/j.dyepig.2015.05.037
[32]  Dhobale, S., Thite, T., Laware, S.L., Rode, C.V., Koppikar, S.J., Ruchika-Kaul, G. and Kale, S.N. (2008) Zinc Oxide Nanoparticles as Novel Alpha-Amylase Inhibitors. Journal of Applied Physics, 104, Article ID: 094907.
https://doi.org/10.1063/1.3009317

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133