全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cyanidine-3-O-Galactoside Enriched Aronia melanocarpa Extract Inhibits Adipogenesis and Lipogenesis via Down-Regulation of Adipogenic Transcription Factors and Their Target Genes in 3T3-L1 Cells

DOI: 10.4236/fns.2019.102011, PP. 128-147

Keywords: Obesity, Adipocyte, Adipogenesis, Lipogenesis, Transcription Factor, Adipocyte Protein 2

Full-Text   Cite this paper   Add to My Lib

Abstract:

Aronia melamocarpa (AM) is a rich source of anthocyanins, which are known to help prevent obesity. The cyanidine-3-O-galactoside enriched AM extract (AM-Ex) containing more cyanidine-3-O-galactoside than conventional AM extract was recently developed. The objective of this study was to examine the effect of AM-Ex on adipogenesis and its action mechanisms in vitro using 3T3-L1 adipocytes. To examine the anti-obesity effect of AM-Ex, 3T3-L1 cells were induced adipocyte differentiation and incubated with various concentration of AM-Ex. Lipid accumulation, cellular triglyceride content, mRNA expression of transcription factors and adipogenic genes were analyzed. Treatment with 100 - 400 μg/mL of AM-Ex resulted in a dose-dependent decrease in adipocyte differentiation and triglyceride accumulation. mRNA expression of adipogenic transcription factors, such as peroxisome proliferator-activated receptor gamma, CCAAT/enhancer binding protein α, sterol regulatory element-binding protein 1 were decreased. The level of gene expression of adipogenesis and lipogenesis-related genes, such as adipocyte protein 2, lipoprotein lipase, acetyl-CoA carboxylase, ATP-citrate lyase and fatty acid synthase were decreased. These results suggest that AM-Ex alleviated risk factors related to obesity by modulating multiple pathways associated with adipogenesis.

References

[1]  Elagizi, A., Kachur, S., Lavie, C.J., Carbone, S., Pandey, A., Ortega, F. and Milani, R.V. (2018) An Overview and Update on Obesity and the Obesity Paradox in Cardiovascular Diseases. Progress in Cardiovascular Diseases, 61, 142-150.
https://doi.org/10.1016/j.pcad.2018.07.003
[2]  Kopelman, P.G. (2000) Obesity as a Medical Problem. Nature, 404, 635-643.
https://doi.org/10.1038/35007508
[3]  Baretic, M. (2013) Obesity Drug Therapy. Minerva Endocrinologica, 38, 245-254.
[4]  Halford, J.C.G. (20016) Obesity Drugs in Clinical Development. Current Opinion Investigational Drugs, 7, 312-318.
[5]  Klaus, S., Pültz, S., Thone-Reineke, C. and Wolfram, S. (2005) Epigallocatechin Gallate Attenuates Diet-Induced Obesity in Mice by Decreasing Energy Absorption and Increasing Fat Oxidation. International Journal of Obesity, 29, 615-623.
https://doi.org/10.1038/sj.ijo.0802926
[6]  Wang, H., Wen, Y., Du, Y., Yan, X., Guo, H., Rycroft, J.A., Boon, N., Kovacs, E.M.R. and Mela, D.J. (2010) Effects of Catechin Enriched Green Tea on Body Composition. Obesity (Silver Spring, Md.), 18, 773-779.
https://doi.org/10.1038/oby.2009.256
[7]  Hayamizu, K., Ishii, Y., Kaneko, I., Shen, M., Okuhara, Y., Shigematsu, N., Tomi, H., Furuse, M., Yoshino, G. and Shimasaki, H. (2003) Effects of Garcinia Cambogia (Hydroxycitric Acid) on Visceral Fat Accumulation: A Double-Blind, Randomized, Placebo-Controlled Trial. Current Therapeutic Research, Clinical and Experimental, 64, 551-567.
https://doi.org/10.1016/j.curtheres.2003.08.006
[8]  Semwal, R.B., Semwal, D.K., Vermaak, I. and Viljoen, A. (2015) A Comprehensive Scientific Overview of Garcinia Cambogia. Fitoterapia, 102, 134-148.
https://doi.org/10.1016/j.fitote.2015.02.012
[9]  Kokotkiewicz, A., Jaremicz, Z. and Luczkiewicz, M. (2010) Aronia Plants: A Review of Traditional Use, Biological Activities, and Perspectives for Modern Medicine. Journal of Medicinal Food, 13, 255-269.
https://doi.org/10.1089/jmf.2009.0062
[10]  Slimestad, R., Torskangerpoll, K., Nateland, H.S., Johannessen, T. and Giske, N.H. (2005) Flavonoids from Black Chokeberries, Aronia melanocarpa. Journal of Food Composition and Analysis, 18, 61-68.
https://doi.org/10.1016/j.jfca.2003.12.003
[11]  Moyer, R.A., Hummer, K.E., Finn, C.E., Frei, B. and Wrolstad, R.E. (2002) Anthocyanins, Phenolics, and Antioxidant Capacity in Diverse Small Fruits: Vaccinium, Rubus, and Ribes. Journal of Agricultural and Food Chemistry, 50, 519-525.
https://doi.org/10.1021/jf011062r
[12]  Valcheva-Kuzmanova, S., Gadjeva, V., Ivanova, D. and Belcheva, A. (2007) Antioxidant Activity of Aronia melanocarpa Fruit Juice in Vitro. Acta Alimentaria, 36, 425-428.
https://doi.org/10.1556/AAlim.36.2007.4.5
[13]  Park, C.H., Kim, J.H., Lee, E.B., Hur, W., Kwon, O.J., Park, H.J. and Yoon, S.K. (2017) Aronia melanocarpa Extract Ameliorates Hepatic Lipid Metabolism through PPARγ2 Downregulation. PLoS ONE, 12, e0169685.
https://doi.org/10.1371/journal.pone.0169685
[14]  Valcheva-Kuzmanova, S., Kuzmanov, K., Mihova, V., Krasnaliev, I., Borisova, P. and Belcheva, A. (2007) Antihyperlipidemic Effect of Aronia melanocarpa Fruit Juice in Rats Fed a High-Cholesterol Diet. Plant Foods for Human Nutrition, 62, 19-24.
https://doi.org/10.1007/s11130-006-0036-2
[15]  Jeon, Y.D., Kang, S.H., Moon, K.H., Lee, J.H., Kim, D.G., Kim, W., Kim, J.S., Ahn, B.Y. and Jin, J.S. (2018) The Effect of Aronia berry on Type 1 Diabetes in Vivo and in Vitro. Journal of Medicinal Food, 21, 244-253.
https://doi.org/10.1089/jmf.2017.3939
[16]  Yamane, T., Kozuk, M., Konda, D., Nakano, Y., Nakagaki, T., Ohkubo, I. and Ariga, H. (2016) Improvement of Blood Glucose Levels and Obesity in Mice Given Aronia Juice by Inhibition of Dipeptidyl Peptidase IV and α-Glucosidase. The Journal of Nutritional Biochemistry, 31, 106-112.
https://doi.org/10.1016/j.jnutbio.2016.02.004
[17]  Valcheva-Kuzmanova, S., Borisova, P., Galunska, B., Krasnaliev, I. and Belcheva, A. (2004) Hepatoprotective Effect of the Natural Fruit Juice from Aronia Melanocarpa on Carbon Tetrachloride-Induced Acute Liver Damage in Rats. Experimental and Toxicologic Pathology, 56, 195-201.
https://doi.org/10.1016/j.etp.2004.04.012
[18]  Bell, D.R. and Gochenaur, K. (2006) Direct Vasoactive and Vasoprotective Properties of Anthocyanin-Rich Extracts. Journal of Applied Physiology, 100, 1164-1170.
https://doi.org/10.1152/japplphysiol.00626.2005
[19]  Cebova, M., Klimentova, J., Janega, P. and Pechanova, O. (2017) Effect of Bioactive Compound of Aronia Melanocarpa on Cardiovascular System in Experimental Hypertension. Oxidative Medicine and Cellular Longevity, 2017, 1-8.
https://doi.org/10.1155/2017/8156594
[20]  Ryszawa, N., Kawczyńska-Drózdz, A., Pryjma, J., Czesnikiewicz-Guzik, M., Adamek-Guzik, T., Naruszewicz, M., Korbut, R. and Guzik, T.J. (2006) Effects of Novel Plant Antioxidants on Platelet Superoxide Production and Aggregation in Atherosclerosis. Journal of Physiology and Pharmacology, 57, 611-626.
[21]  Matsumoto, M., Hara, H., Chiji, H. and Kasai, T. (2004) Gastroprotective Effect of Red Pigments in Black Chokeberry Fruit (Aronia Melanocarpa Elliot) on Acute Gastric Hemorrhagic Lesions in Rats. Journal of Agricultural and Food Chemistry, 52, 2226-2229.
https://doi.org/10.1021/jf034818q
[22]  Qin, B. and Anderson, R.A. (2012) An Extract of Chokeberry Attenuates Weight Gain and Modulates Insulin, Adipogenic and Inflammatory Signalling Pathways in Epididymal Adipose Tissue of Rats Fed a Fructose-Rich Diet. British Journal of Nutrition, 108, 581-587.
https://doi.org/10.1017/S000711451100599X
[23]  Takahashi, A., Shimizu, H., Okazaki, Y., Sakaguchi, H., Taira, T., Suzuki, T. and Chiji, H. (2015) Anthocyanin-Rich Phytochemicals from Aronia Fruits Inhibit Visceral Fat Accumulation and Hyperglycemia in High-Fat Diet-Induced Dietary Obese Eats. Journal of Oleo Science, 64, 1243-1250.
https://doi.org/10.5650/jos.ess15181
[24]  Kim, M.Y., Lee, J.M., Lee, J.Y. and Lee, H.Y. (2016) Enhancement of Anti-Obesity Activities of Aronia Melanocarpa Elliot Extracts from Low Temperature Ultrasonification Process. Korean Journal of Medicinal Crop Science, 24, 309-316.
https://doi.org/10.7783/KJMCS.2016.24.4.309
[25]  Gregoire, F.M., Smas, C.M. and Sul, H.S. (1998) Understanding Adipocyte Differentiation. Physiological Reviews, 78, 783-809.
https://doi.org/10.1152/physrev.1998.78.3.783
[26]  Denizot, F. and Lang, R. (1986) Rapid Colorimetric Assay for Cell Growth and Survival. Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. Journal of Immunological Methods, 8, 271-277.
https://doi.org/10.1016/0022-1759(86)90368-6
[27]  Folch, J., Lees, M. and Sloane Stanley, G.H. (1957) A Simple Method for the Isolation and Purification of Total Lipides from Animal Tissues. The Journal of Biological Chemistry, 226, 497-509.
[28]  He, Y., Li, Y., Zhao, T., Wang, Y. and Sun, C. (2013) Ursolic Acid Inhibits Adipogenesis in 3T3-L1 Adipocytes through LKB1/AMPK Pathway. PLoS ONE, 8, e70135.
https://doi.org/10.1371/journal.pone.0070135
[29]  Rosen, E.D. and MacDougald, O.A. (2006) Adipocyte Differentiation from the Inside Out. Nature Reviews Molecular Cell Biology, 7, 885-896.
https://doi.org/10.1038/nrm2066
[30]  Farmer, S.R. (2006) Transcriptional Control of Adipocyte Formation. Cell Metabolism, 4, 263-273. https://doi.org/10.1016/j.cmet.2006.07.001
[31]  Crubasik, C., Li, G. and Crubasik, S. (2010) The Clinical Effectiveness of Chokeberry: A Systematic Review. Phytotherapy Research, 24, 1107-1114.
https://doi.org/10.1002/ptr.3226
[32]  Sikora, J., Broncel, M., Markowicz, M., Chatubinski, M., Wojdan, K. and Mikiciuk-Olasik, E. (2012) Short-Term Supplementation with Aronia Melanocarpa Extract Improves Platelet Aggregation, Clotting, and Fibrinolysis in Patients with Metabolic Syndrome. European Journal of Nutrition, 51, 549-556.
https://doi.org/10.1007/s00394-011-0238-8
[33]  Rodríguez-Acebes, S., Palacios, N., Botella-Carretero, J.I., Olea, N., Crespo, L., Peromingo, R., Gómez-Coronado, D., Lasunción, M.A., Vázquez, C. and Martínez-Botas, J. (2010) Gene Expression Profiling of Subcutaneous Adipose Tissue in Morbid Obesity Using a Focused Microarray: Distinct Expression of Cell-Cycle- and Differentiation-Related Genes. BMC Medical Genomics, 3, 61.
https://doi.org/10.1186/1755-8794-3-61
[34]  Lefterova, M.I. and Lazar, M.A. (2009) New Developments in Adipogenesis. Trends in Endocrinology and Metabolism, 20, 107-114.
https://doi.org/10.1016/j.tem.2008.11.005
[35]  Stephens, J.M. (2012) The Fat Controller: Adipocyte Development. PLoS Biology, 10, e1001436.
https://doi.org/10.1371/journal.pbio.1001436
[36]  Sun, L., Goff, L.A., Trapnell, C., Alexander, R., Lo, K.A., Hacisuleyman, E., Sauvageau, M., Tazon-Vega, B., Kelley, D.R., Hendrickson, D.G., Yuan, B., Kellis, M., Lodish, H.F. and Rinn, J.L. (2013) Long Noncoding RNAs Regulate Adipogenesis. Proceeding of the National Academy of Sciences of the United States of America, 110, 3387-3392.
https://doi.org/10.1073/pnas.1222643110
[37]  Tontonoz, P. and Spiegelman, B.M. (2008) Fat and Beyond: The Diverse Biology of PPARgamma. Annual Review of Biochemistry, 77, 289-312.
https://doi.org/10.1146/annurev.biochem.77.061307.091829
[38]  Rosen, E.D., Hsu, C.H., Wang, X., Sakai, S., Freeman, M.W., Gonzalez, F.J. and Spiegelman, B.M. (2002) C/EBP Alpha Induces Adipogenesis through PPARgamma: A Unified Pathway. Genes & Development, 16, 22-26.
https://doi.org/10.1101/gad.948702
[39]  Tontonoz, P., Hu, E., Graves, R.A., Budavari, A.I. and Spiegelman, B.M. (1994) mPPAR Gamma 2: Tissue-Specific Regulator of an Adipocyte Enhancer. Genes, 15, 1224-1234.
https://doi.org/10.1101/gad.8.10.1224
[40]  Tamori, Y., Masugi, J., Nishino, N. and Kasuga, M. (2002) Role of Peroxisome Proliferator-Activated Receptor-Gamma in Maintenance of the Characteristics of Mature 3T3-L1 Adipocytes. Diabetes, 51, 2045-2055.
https://doi.org/10.2337/diabetes.51.7.2045
[41]  Ortuno Sahagún, D., Márquez-Aguirre, A.L., Quintero-Fabián, S., López-Roa, R.I. and Rojas-Mayorquín, A.E. (2012) Modulation of PPAR-γ by Nutraceutics as Complementary Treatment for Obesity-Related Disorders and Inflammatory Diseases. PPAR Research, 2012, Article ID: 318613.
[42]  Kim, J.B., Sarraf, P., Wright, M., Yao, K.M., Mueller, E., Solanes, G., Lowell, B.B. and Spiegelman, B.M. (1998) Nutritional and Insulin Regulation of Fatty Acid Synthetase and Leptin Gene Expression through ADD1/SREBP1. Journal of Clinical Investigation, 101, 1-9.
https://doi.org/10.1172/JCI1411
[43]  Makowski, L., Boord, J.B., Maeda, K., Babaev, V.R., Uysal, K.T., Morgan, M.A., Parker, R.A., Suttles, J., Fazio, S., Hotamisligil, G.S. and Linton, M.F. (2001) Lack of Macrophage Fatty-Acid-Binding Protein aP2 Protects Mice Deficient in Apolipoprotein E against Atherosclerosis. Nature Medicine, 7, 699-705.
https://doi.org/10.1038/89076
[44]  Furuhashi, M., Tuncman, G., Gorgün, C.Z., Makowski, L., Atsumi, G., Vaillancourt, E., Kono, K., Babaev, V.R., Fazio, S., Linton, M.F., Sulsky, R., Robl, J.A., Parker, R.A. and Hotamisligil, G.S. (2007) Treatment of Diabetes and Atherosclerosis by Inhibiting Fatty-Acid-Binding Protein aP2. Nature, 447, 959-965.
https://doi.org/10.1038/nature05844
[45]  hum, B.O., Mackay, C.R., Gorgun, C.Z., Frost, M.J., Kumar, R.K., Hotamisligil, G.S. and Rolph, M.S. (2006) The Adipocyte Fatty Acid-Binding Protein aP2 Is Required in Allergic Airway Inflammation. Journal of Clinical Investigation, 116, 2183-2192.
https://doi.org/10.1172/JCI24767
[46]  Maeda, K., Cao, H., Kono, K., Gorgun, C.Z., Furuhashi, M., Uysal, K.T., Cao, Q., Atsumi, G., Malone, H., Krishnan, B., Minokoshi, Y., Kahn, B.B., Parker, R.A. and Hotamisligil, G.S. (2005) Adipocyte/Macrophage Fatty Acid Binding Proteins Control Integrated Metabolic Responses in Obesity and Diabetes. Cell Metabolism, 1, 107-119.
https://doi.org/10.1016/j.cmet.2004.12.008
[47]  Makowski, L. and Hotamisligil, G.S. (2005) The Role of Fatty Acid Binding Proteins in Metabolic Syndrome and Atherosclerosis. Current Opinion in Lipidology, 16, 543-548.
https://doi.org/10.1097/01.mol.0000180166.08196.07
[48]  Schoonjans, K., Peinado-Onsurbe, J., Lefebvre, A.M., Heyman, R.A., Briggs, M., Deeb, S., Staels, B. and Auwerx, J. (1995) PPARα and PPARγ Activators Direct a Distinct Tissue-Specific Transcriptional Response via a PPRE in the Lipoprotein Lipase Gene. The EMBO Journal, 15, 5336-5348.
https://doi.org/10.1002/j.1460-2075.1996.tb00918.x
[49]  Qin, B., Polansky, M.M. and Anderson, R.A. (2010) Cinnamon Extract Regulates Plasma Levels of Adipose-Derived Factors and Expression of Multiple Genes Related to Carbohydrate Metabolism and Lipogenesis in Adipose Tissue of Fructose-Fed Rats. Hormone and Metabolic Research, 42, 187-193.
https://doi.org/10.1055/s-0029-1242746
[50]  Lee, M.S., Kim, C.T. and Kim, Y. (2009) Green Rea (-)-epigallocatechin-3-fallate Reduces Body Weight with Regulation of Multiple Genes Expression in Adipose Tissue of Diet-Induced Obese Mice. Annals of Nutrition and Metabolism, 54, 151-157.
https://doi.org/10.1159/000214834
[51]  Kim, T.S., Leahy, P. and Freake, H.C. (1996) Promoter Usage Determines Tissue Specific Responsiveness of the Rat Acetyl-CoA Carboxylase Gene. Biochemical and Biophysical Research Communications, 225, 647-653.
https://doi.org/10.1006/bbrc.1996.1224
[52]  Barber, M.C., Price, N.T. and Travers, M.T. (2005) Structure and Regulation of Acetyl-CoA Carboxylase Genes of Metazoa. Biochimica et Biophysica Acta, 1733, 1-28.
https://doi.org/10.1016/j.bbalip.2004.12.001
[53]  Sun, T., Hayakawa, K., Bateman, K.S. and Fraser, M.E. (2010) Identification of the Citrate-Binding Site of Human ATP-Citrate Lyase Using X-Ray Crystallography. The Journal of Biology Chemistry, 285, 27418-27428.
https://doi.org/10.1074/jbc.M109.078667
[54]  Guay, C., Madiraju, S.R., Aumais, A., Joly, E. and Prentki, M. (2007) A Role for ATP-Citrate Lyase, Malic Enzyme, and Pyruvate/Citrate Cycling in Glucose-Induced Insulin Secretion. The Journal of Biology Chemistry, 282, 35657-35665.
https://doi.org/10.1074/jbc.M707294200
[55]  Latasa, M.J., Griffin, M.J., Moon, Y.S., Kang, C. and Sul, H.S. (2003) Occupancy and Function of the -150 Sterol Regulatory Element and -65 E-Box in Nutritional Regulation of the Fatty Acid Synthase Gene in Living Animals. Molecular and Cellular Biology, 23, 5896-5907.
https://doi.org/10.1128/MCB.23.16.5896-5907.2003
[56]  Guichard, C., Dugail, I., Le, L.X. and Lavau, M. (1992) Genetic Regulation of Fatty Acid Synthetase Expression in Adipose Tissue: Over-Transcription of the Gene in Genetically Obese Rats. The Journal of Lipid Research, 33, 679-687.
[57]  Kardum, N., Petrovic-Oggiano, G., Takic, M., Glibetic, N., Zec, M., Debeljak-Martacic, J. and Konic-Ristic, A. (2014) Effects of Glucomannan-Enriched, Aronia Juice-Based Supplement on Cellular Antioxidant Enzymes and Membrane Lipid Status in Subjects with Abdominal Obesity. Scientific World Journal, 2014, Article ID: 869250.
https://doi.org/10.1155/2014/869250
[58]  Kowalska, K., Olejnik, A., Szwajgier, D. and Olkowicz, M. (2017) Inhibitory Activity of Chokeberry, Bilberry, Raspberry and Cranberry Polyphenol-Rich Extract towards Adipogenesis and Oxidative Stress in Differentiated 3T3-L1 Adipose Cells. PLoS ONE, 12, e0188583.
https://doi.org/10.1371/journal.pone.0188583

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133