全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Epigenetic mechanisms that interact in the development of social insects

DOI: 10.4236/oalib.1114693, PP. 1-22

Subject Areas: Molecular Biology, Genetics, Applied Biology

Keywords: Epigenetics, Methylation, Polyphenism, Social Insects

Full-Text   Cite this paper   Add to My Lib

Abstract

Epigenetic mechanisms regulate and stabilize a broad range of biological processes without altering the primary DNA sequence. This regulation is achieved through DNA methylation, post-translational histone modifications (PTMs), and non-coding RNAs (ncRNAs). These mechanisms facilitate rapid and flexible changes in gene expression in response to environmental cues such as temperature, humidity, nutrition, and chemical exposure. Upon detection of these signals, the neuroendocrine system relays the information to target tissues, where it initiates the reprogramming of gene expression and the subsequent generation of phenotypic changes. Among the most extensively studied phenomena are development, sex and caste determination, seasonal effects, dispersal, and behavioral polyphenisms. These diverse phenotypes result from the epigenetic modulation of a shared genome, enabling genetically identical individuals to produce distinct “morphs.” This review summarizes current understanding of the core epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs and elucidates their pivotal role in the gene regulation of polyphenism in social insects.

Cite this paper

Castellanos-Zacarías, C. , Á, Domínguez-Rebolledo, L. , Us-Camas, R. , Baeza-Rodríguez, J. , Zamora-Bustillos, R. , Rodríguez-Salinas, A. , Vivas-Rodríguez, J. , Ramón-Ugalde, J. and Loeza-Concha, H. (2025). Epigenetic mechanisms that interact in the development of social insects. Open Access Library Journal, 12, e14693. doi: http://dx.doi.org/10.4236/oalib.1114693.

References

[1]  Snell-Rood, E.C. (2013) An Overview of the Evolutionary Causes and Conse-quences of Behavioural Plasticity. Animal Behaviour, 85, 1004-1011. https://doi.org/10.1016/j.anbehav.2012.12.031
[2]  Weiner, S.A. and Toth, A.L. (2012) Epigenetics in Social Insects: A New Direction for Understanding the Evolution of Castes. Genetics Research International, 2012, Article ID: 609810. https://doi.org/10.1155/2012/609810
[3]  Cridge, A., Harrop, T., Lovegrove, M., Remnant, E. and Dearden, P. (2017) Nutrition and Epigenetic Change in Insects: Evidence and Implications. Advances in Insect Physiology, 53, 31-54. https://doi.org/10.1016/bs.aiip.2017.06.001
[4]  Zhang, T. and Meaney, M.J. (2010) Epigenetics and the Environmental Regulation of the Ge-nome and Its Function. Annual Review of Psychology, 61, 439-466. https://doi.org/10.1146/annurev.psych.60.110707.163625
[5]  Lian, T., Gaur, U., Yang, D., Li, D., Li, Y. and Yang, M. (2015) Epigenetic Mechanisms of Dietary Restriction Induced Aging in Drosophila. Experimental Gerontology, 72, 38-44. https://doi.org/10.1016/j.exger.2015.08.015
[6]  Ford, D. (2013) Honeybees and Cell Lines as Models of DNA Methylation and Aging in Response to Diet. Experimental Gerontology, 48, 614-619. https://doi.org/10.1016/j.exger.2012.07.010
[7]  Holman, L., Helanterä, H., Trontti, K. and Mikheyev, A.S. (2019) Comparative Transcriptomics of Social Insect Queen Pheromones. Nature Communications, 10, Article No. 1593. https://doi.org/10.1038/s41467-019-09567-2
[8]  Glastad, K.M., Gokhale, K., Liebig, J. and Goodisman, M.A.D. (2016) The Caste- and Sex-Specific DNA Methylome of the Termite Zootermopsis Nevadensis. Scientific Reports, 6, Arti-cle No. 37110. https://doi.org/10.1038/srep37110
[9]  Alvarado, S., Raja-kumar, R., Abouheif, E. and Szyf, M. (2015) Epigenetic Variation in the EGFR Gene Generates Quantitative Variation in a Complex Trait in Ants. Nature Communications, 6, Article No. 6513. https://doi.org/10.1038/ncomms7513
[10]  Even, N., Devaud, J. and Barron, A. (2012) General Stress Responses in the Honey Bee. Insects, 3, 1271-1298. https://doi.org/10.3390/insects3041271
[11]  Holman, L., Trontti, K. and Helanterä, H. (2016) Queen Pheromones Modulate DNA Methyltransferase Ac-tivity in Bee and Ant Workers. Biology Letters, 12, Article ID: 20151038. https://doi.org/10.1098/rsbl.2015.1038
[12]  Foret, S., Kucharski, R., Pit-telkow, Y., Lockett, G.A. and Maleszka, R. (2009) Epigenetic Regulation of the Honey Bee Transcriptome: Unravelling the Nature of Methylated Genes. BMC Genomics, 10, Article No. 472. https://doi.org/10.1186/1471-2164-10-472
[13]  Liberti, J., Görner, J., Welch, M., Dosselli, R., Schiøtt, M., Ogawa, Y., et al. (2019) Seminal Fluid Compromises Visual Perception in Honeybee Queens Reducing Their Survival during Addi-tional Mating Flights. eLife, 8, e45009. https://doi.org/10.7554/elife.45009
[14]  Withrow, J.M. and Tarpy, D.R. (2018) Cryptic “Royal” Subfamilies in Honey Bee (Apis mellifera) Colonies. PLOS ONE, 13, e0199124. https://doi.org/10.1371/journal.pone.0199124
[15]  Zhuo, J., Lei, C., Shi, J., Xu, N., Xue, W., Zhang, M., et al. (2017) TRA-2 Mediates Cross-Talk between Sex Determination and Wing Polyphenism in Female Nilaparvata lugens. Genet-ics, 207, 1067-1078. https://doi.org/10.1534/genetics.117.300328
[16]  Chemnitz, J., von Ho-ermann, C., Ayasse, M. and Steiger, S. (2020) The Impact of Environmental Factors on the Efficacy of Chemical Communication in the Burying Beetle (Cole-optera: Silphidae). Journal of Insect Science, 20, Article No. 3. https://doi.org/10.1093/jisesa/ieaa061
[17]  Ma, R., Rangel, J. and Grozinger, C.M. (2019) Honey Bee (Apis mellifera) Larval Pheromones May Regulate Gene Expression Related to Foraging Task Specialization. BMC Genomics, 20, Article No. 592. https://doi.org/10.1186/s12864-019-5923-7
[18]  Tang, H.Y., Smith-Caldas, M.S.B., Driscoll, M.V., Salhadar, S. and Shingleton, A.W. (2011) FOXO Regulates Organ-Specific Phenotypic Plasticity in Drosophila. PLOS Genet-ics, 7, e1002373. https://doi.org/10.1371/journal.pgen.1002373
[19]  Pegoraro, M., Marshall, H., Lonsdale, Z.N. and Mallon, E.B. (2017) Do Social Insects Support Haig’s Kin Theory for the Evolution of Genomic Imprinting? Epigenetics, 12, 725-742. https://doi.org/10.1080/15592294.2017.1348445
[20]  Gotoh, H., Miyakawa, H., Ishikawa, A., Ishikawa, Y., Sugime, Y., Emlen, D.J., et al. (2014) Develop-mental Link between Sex and Nutrition; Doublesex Regulates Sex-Specific Man-dible Growth via Juvenile Hormone Signaling in Stag Beetles. PLOS Genetics, 10, e1004098. https://doi.org/10.1371/journal.pgen.1004098
[21]  Shukla, J.N. and Palli, S.R. (2012) Doublesex Target Genes in the Red Flour Beetle, Triboli-um castaneum. Scientific Reports, 2, Article No. 948. https://doi.org/10.1038/srep00948
[22]  Suzuki, M.G., Funaguma, S., Kanda, T., Tamura, T. and Shimada, T. (2005) Role of the Male BmDSX Protein in the Sexual Differentiation of Bombyx mori. Evolution & Development, 7, 58-68. https://doi.org/10.1111/j.1525-142x.2005.05007.x
[23]  Biewer, M., Schle-singer, F. and Hasselmann, M. (2015) The Evolutionary Dynamics of Major Regulators for Sexual Development among Hymenoptera Species. Frontiers in Genetics, 6, Article 124. https://doi.org/10.3389/fgene.2015.00124
[24]  Brito, D.V., Silva, C.G.N., Hasselmann, M., Viana, L.S., Astolfi-Filho, S. and Carvalho-Zilse, G.A. (2015) Molecular Characterization of the Gene Feminizer in the Stingless Bee Melipona interrupta (Hymenoptera: Apidae) Reveals Association to Sex and Caste Devel-opment. Insect Biochemistry and Molecular Biology, 66, 24-30. https://doi.org/10.1016/j.ibmb.2015.09.008
[25]  Lyko, F. and Maleszka, R. (2011) Insects as Innovative Models for Functional Studies of DNA Methylation. Trends in Genetics, 27, 127-131. https://doi.org/10.1016/j.tig.2011.01.003
[26]  Lucas, K.J., Zhao, B., Liu, S. and Raikhel, A.S. (2015) Regulation of Physiological Processes by MicroRNAs in Insects. Current Opinion in Insect Science, 11, 1-7. https://doi.org/10.1016/j.cois.2015.06.004
[27]  Meister, G. (2013) Argo-naute Proteins: Functional Insights and Emerging Roles. Nature Reviews Genet-ics, 14, 447-459. https://doi.org/10.1038/nrg3462
[28]  Ashby, R., Forêt, S., Searle, I. and Maleszka, R. (2016) MicroRNAs in Honey Bee Caste Determina-tion. Scientific Reports, 6, Article No. 18794. https://doi.org/10.1038/srep18794
[29]  Shi, Y.Y., Huang, Z.Y., Zeng, Z.J., Wang, Z.L., Wu, X.B. and Yan, W.Y. (2011) Diet and Cell Size Both Affect Queen-Worker Differentiation through DNA Methylation in Honey Bees (Apis mellifera, Apidae). PLOS ONE, 6, e18808. https://doi.org/10.1371/journal.pone.0018808
[30]  Watson, O.T., Buch-mann, G., Young, P., Lo, K., Remnant, E.J., Yagound, B., et al. (2022) Abundant Small RNAs in the Reproductive Tissues and Eggs of the Honey Bee, Apis mellif-era. BMC Genomics, 23, Article No. 257. https://doi.org/10.1186/s12864-022-08478-9
[31]  Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., et al. (2014) A Single Fe-male-Specific piRNA Is the Primary Determiner of Sex in the Silkworm. Nature, 509, 633-636. https://doi.org/10.1038/nature13315
[32]  Castañeda, J., Genzor, P. and Bortvin, A. (2011) piRNAs, Transposon Silencing, and Germline Genome Integrity. Mutation Research—Fundamental and Molecular Mecha-nisms of Mutagenesis, 714, 95-104. https://doi.org/10.1016/j.mrfmmm.2011.05.002
[33]  Homolka, D., Pandey, R.R., Goriaux, C., Brasset, E., Vaury, C., Sachidanandam, R., et al. (2015) PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Bi-ogenesis. Cell Reports, 12, 418-428. https://doi.org/10.1016/j.celrep.2015.06.030
[34]  Hu, H., Bezabih, G., Feng, M., Wei, Q., Zhang, X., Wu, F., et al. (2019) In-Depth Proteome of the Hypo-pharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Molecular & Cellular Proteomics, 18, 606-621. https://doi.org/10.1074/mcp.ra118.001257
[35]  Zhu, K., Liu, M., Fu, Z., Zhou, Z., Kong, Y., Liang, H., et al. (2017) Plant MicroRNAs in Larval Food Reg-ulate Honeybee Caste Development. PLOS Genetics, 13, e1006946. https://doi.org/10.1371/journal.pgen.1006946
[36]  Kamakura, M. (2011) Royalactin Induces Queen Differentiation in Honeybees. Nature, 473, 478-483. https://doi.org/10.1038/nature10093
[37]  Alhosin, M. (2023) Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenetics Insights, 16, 1-11. https://doi.org/10.1177/25168657231213717
[38]  Wang, Y., Azevedo, S.V., Hartfelder, K. and Amdam, G. (2013) Insulin-Like Peptides (AmILP1 and AmILP2) Differentially Affect Female Caste Development in the Honey Bee (Apis mellifera). Journal of Experimental Biology, 216, 4347-4357. https://doi.org/10.1242/jeb.085779
[39]  Law, J.A. and Jacobsen, S.E. (2010) Establishing, Maintaining and Modifying DNA Methylation Patterns in Plants and Animals. Nature Reviews Genetics, 11, 204-220. https://doi.org/10.1038/nrg2719
[40]  Yang, X., Chen, D., Zheng, S., Yi, M., Wang, S., Liu, Y., et al. (2023) The Prmt5-Vasa Module Is Essential for Sper-matogenesis in Bombyx mori. PLOS Genetics, 19, e1010600. https://doi.org/10.1371/journal.pgen.1010600
[41]  Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., Robinson, G.E., et al. (2012) DNA Meth-ylation Dynamics, Metabolic Fluxes, Gene Splicing, and Alternative Phenotypes in Honey Bees. Proceedings of the National Academy of Sciences of the United States of America, 109, 4968-4973. https://doi.org/10.1073/pnas.1202392109
[42]  Li-Byarlay, H., Li, Y., Stroud, H., Feng, S., Newman, T.C., Kaneda, M., et al. (2013) RNA Interference Knock-down of DNA Methyl-Transferase 3 Affects Gene Alternative Splicing in the Honey Bee. Proceedings of the National Academy of Sciences of the United States of America, 110, 12750-12755. https://doi.org/10.1073/pnas.1310735110
[43]  Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C. and Maleszka, R. (2011) Correction: The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PLOS Biology, 9. https://doi.org/10.1371/annotation/2db9ee19-faa4-43f2-af7a-c8aeacca8037
[44]  Qiu, B., Dai, X., Li, P., Larsen, R.S., Li, R., Price, A.L., et al. (2022) Cana-lized Gene Expression during Development Mediates Caste Differentiation in Ants. Nature Ecology & Evolution, 6, 1753-1765. https://doi.org/10.1038/s41559-022-01884-y
[45]  Amaral, I.M.R., Neto, J.F.M., Pereira, G.B., Franco, M.B., Beletti, M.E., Kerr, W.E., et al. (2010) Circu-lating Hemocytes from Larvae of Melipona scutellaris (Hymenoptera, Apidae, Meliponini): Cell Types and Their Role in Phagocytosis. Micron, 41, 123-129. https://doi.org/10.1016/j.micron.2009.10.003
[46]  Jarau, S., van Veen, J.W., Twele, R., Reichle, C., Gonzales, E.H., Aguilar, I., et al. (2010) Workers Make the Queens in Melipona Bees: Identification of Geraniol as a Caste Determining Compound from Labial Glands of Nurse Bees. Journal of Chemical Ecology, 36, 565-569. https://doi.org/10.1007/s10886-010-9793-3
[47]  Bomtorin, A.D., Mackert, A., Rosa, G.C.C., Moda, L.M., Martins, J.R., Bitondi, M.M.G., et al. (2014) Juvenile Hormone Biosynthesis Gene Expression in the Corpora allata of Honey Bee (Apis mellifera L.) Female Castes. PLOS ONE, 9, e86923. https://doi.org/10.1371/journal.pone.0086923
[48]  Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., et al. (2011) CTCF-Promoted RNA Polymerase II Pausing Links DNA Methylation to Splicing. Nature, 479, 74-79. https://doi.org/10.1038/nature10442
[49]  Mao, W., Schuler, M.A. and Berenbaum, M.R. (2015) A Dietary Phytochemical Alters Caste-Associated Gene Expression in Honey Bees. Science Advances, 1, e1500795. https://doi.org/10.1126/sciadv.1500795
[50]  Cheng, L.Y., Bailey, A.P., Leevers, S.J., Ragan, T.J., Driscoll, P.C. and Gould, A.P. (2011) Anaplastic Lymphoma Kinase Spares Organ Growth during Nutrient Restriction in Dro-sophila. Cell, 146, 435-447. https://doi.org/10.1016/j.cell.2011.06.040
[51]  Cardoso-Júnior, C.A.M., Fu-jimura, P.T., Santos-Júnior, C.D., Borges, N.A., Ueira-Vieira, C., Hartfelder, K., et al. (2017) Epigenetic Modifications and Their Relation to Caste and Sex Deter-mination and Adult Division of Labor in the Stingless Bee Melipona scutellaris. Genetics and Molecular Biology, 40, 61-68. https://doi.org/10.1590/1678-4685-gmb-2016-0242
[52]  Dickman, M.J., Kucharski, R., Maleszka, R. and Hurd, P.J. (2013) Extensive Histone Post-Translational Modification in Honey Bees. Insect Biochemistry and Molecu-lar Biology, 43, 125-137. https://doi.org/10.1016/j.ibmb.2012.11.003
[53]  Wellen, K.E., Hatzivassiliou, G., Sachdeva, U.M., Bui, T.V., Cross, J.R. and Thompson, C.B. (2009) ATP-Citrate Lyase Links Cellular Metabolism to Histone Acetylation. Science, 324, 1076-1080. https://doi.org/10.1126/science.1164097
[54]  Chiang, R.G. and Chiang, J.A. (2017) Reproductive Physiology in the Blood Feeding Insect, Rhod-nius prolixus, from Copulation to the Control of Egg Production. Journal of In-sect Physiology, 97, 27-37. https://doi.org/10.1016/j.jinsphys.2016.06.001
[55]  Hernández-Martínez, S., Rivera-Perez, C., Nouzova, M. and Noriega, F.G. (2015) Coordinated Changes in JH Biosynthesis and JH Hemolymph Titers in Aedes aegypti Mosquitoes. Journal of Insect Physiology, 72, 22-27. https://doi.org/10.1016/j.jinsphys.2014.11.003
[56]  Mirth, C.K. and Shin-gleton, A.W. (2014) The Roles of Juvenile Hormone, Insulin/Target of Rapamy-cin, and Ecydsone Signaling in Regulating Body Size in Drosophila. Communica-tive & Integrative Biology, 7, e971568. https://doi.org/10.4161/cib.29240
[57]  Kuroda, M.I., Hilfiker, A. and Lucche-si, J.C. (2016) Dosage Compensation in Drosophila—A Model for the Coordinate Regulation of Transcription. Genetics, 204, 435-450. https://doi.org/10.1534/genetics.115.185108
[58]  Palmer, M.J., Mergner, V.A., Richman, R., Manning, J.E., Kuroda, M.I. and Lucchesi, J.C. (1993) The Male-Specific Lethal-One (MSL-1) Gene of Drosophila Melanogaster Encodes a Novel Protein That Associates with the X Chromosome in Males. Genetics, 134, 545-557. https://doi.org/10.1093/genetics/134.2.545
[59]  Hartfelder, K., Guidugli-Lazzarini, K.R., Cervoni, M.S., Santos, D.E. and Humann, F.C. (2015) Old Threads Make New Tapestry—Rewiring of Signalling Pathways Underlies Caste Phenotypic Plasticity in the Honey Bee, Apis mellifera L. Advances in In-sect Physiology, 48, 1-36. https://doi.org/10.1016/bs.aiip.2014.12.001
[60]  Mutti, N.S., Dolezal, A.G., Wolschin, F., Mutti, J.S., Gill, K.S. and Amdam, G.V. (2011) IRS and TOR Nutri-ent-Signaling Pathways Act via Juvenile Hormone to Influence Honey Bee Caste Fate. Journal of Experimental Biology, 214, 3977-3984. https://doi.org/10.1242/jeb.061499
[61]  Kucharski, R., Maleszka, J., Foret, S. and Maleszka, R. (2008) Nutritional Control of Reproductive Status in Honey-bees via DNA Methylation. Science, 319, 1827-1830. https://doi.org/10.1126/science.1153069
[62]  Barth, J.M.I., Szabad, J., Hafen, E. and Köhler, K. (2010) Autophagy in Drosophila Ovaries Is Induced by Star-vation and Is Required for Oogenesis. Cell Death & Differentiation, 18, 915-924. https://doi.org/10.1038/cdd.2010.157
[63]  Cardoso-Júnior, C.A.M., Silva, R.P., Borges, N.A., de Carvalho, W.J., Walter, S.L., Simões, Z.L.P., et al. (2017) Methyl Farnesoate Epoxidase (mfe) Gene Expression and Juvenile Hormone Titers in the Life Cycle of a Highly Eusocial Stingless Bee, Melipona scutellaris. Journal of Insect Physiology, 101, 185-194. https://doi.org/10.1016/j.jinsphys.2017.08.001
[64]  Rachinsky, A. and Hart-felder, K. (1990) Corpora Allata Activity, a Prime Regulating Element for Caste-Specific Juvenile Hormone Titre in Honey Bee Larvae (Apis mellifera Car-nica). Journal of Insect Physiology, 36, 189-194. https://doi.org/10.1016/0022-1910(90)90121-u
[65]  Lockett, G., Wilkes, F., Helliwell, P. and Maleszka, R. (2014) Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee. In-sects, 5, 377-398. https://doi.org/10.3390/insects5020377
[66]  Li, W., Liu, M., Zhuang, Z., Gao, L., Song, J. and Zhou, S. (2024) The Mirna–mrna Modules Enhance Juvenile Hormone Biosynthesis for Insect Vitellogenesis and Egg Pro-duction. Insect Science, 32, 1227-1240. https://doi.org/10.1111/1744-7917.13451
[67]  Laktionov, P.P., Maksimov, D.A., Romanov, S.E., Antoshina, P.A., Posukh, O.V., White-Cooper, H., et al. (2018) Genome-Wide Analysis of Gene Regulation Mechanisms during Dro-sophila Spermatogenesis. Epigenetics & Chromatin, 11, Article No. 14. https://doi.org/10.1186/s13072-018-0183-3
[68]  Vander Heiden, M.G. and Thompson, C.B. (1999) Bcl-2 Proteins: Regulators of Apoptosis or of Mitochon-drial Homeostasis? Nature Cell Biology, 1, E209-E216. https://doi.org/10.1038/70237
[69]  Drewell, R.A., Bush, E.C., Remnant, E.J., Wong, G.T., Beeler, S.M., Stringham, J.L., et al. (2014) The Dynamic DNA Meth-ylation Cycle from Egg to Sperm in the Honey Bee Apis mellifera. Development, 141, 2702-2711. https://doi.org/10.1242/dev.110163
[70]  Cunningham, C.B., Shelby, E.A., McKinney, E.C., Schmitz, R.J., Moore, A.J. and Moore, P.J. (2023) The Role of Dmnt1 during Spermatogenesis of the Insect Oncopeltus fasciatus. Epigenetics & Chromatin, 16, Article No. 28. https://doi.org/10.1186/s13072-023-00496-5
[71]  Oldroyd, B.P., Allsopp, M.H., Roth, K.M., Remnant, E.J., Drewell, R.A. and Beekman, M. (2014) A Par-ent-Of-Origin Effect on Honeybee Worker Ovary Size. Proceedings of the Royal Society B: Biological Sciences, 281, Article ID: 20132388. https://doi.org/10.1098/rspb.2013.2388
[72]  Nanty, L., Carbajosa, G., Heap, G.A., Ratnieks, F., van Heel, D.A., Down, T.A., et al. (2011) Comparative Methylomics Reveals Gene-Body H3k36me3 in Drosophila Predicts DNA Meth-ylation and CpG Landscapes in Other Invertebrates. Genome Research, 21, 1841-1850. https://doi.org/10.1101/gr.121640.111
[73]  Ishizu, H., Siomi, H. and Siomi, M.C. (2012) Biology of Piwi-Interacting RNAs: New Insights into Bio-genesis and Function Inside and Outside of Germlines. Genes & Development, 26, 2361-2373. https://doi.org/10.1101/gad.203786.112
[74]  Murphy, P.J., Wu, S.F., James, C.R., Wike, C.L. and Cairns, B.R. (2018) Placeholder Nucleo-somes Underlie Germline-To-Embryo DNA Methylation Reprogramming. Cell, 172, 993-1006.e13. https://doi.org/10.1016/j.cell.2018.01.022

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133