Epigenetic mechanisms regulate and stabilize a broad range of biological processes without altering the primary DNA sequence. This regulation is achieved through DNA methylation, post-translational histone modifications (PTMs), and non-coding RNAs (ncRNAs). These mechanisms facilitate rapid and flexible changes in gene expression in response to environmental cues such as temperature, humidity, nutrition, and chemical exposure. Upon detection of these signals, the neuroendocrine system relays the information to target tissues, where it initiates the reprogramming of gene expression and the subsequent generation of phenotypic changes. Among the most extensively studied phenomena are development, sex and caste determination, seasonal effects, dispersal, and behavioral polyphenisms. These diverse phenotypes result from the epigenetic modulation of a shared genome, enabling genetically identical individuals to produce distinct “morphs.” This review summarizes current understanding of the core epigenetic mechanisms including DNA methylation, histone modifications, and non-coding RNAs and elucidates their pivotal role in the gene regulation of polyphenism in social insects.
Cite this paper
Castellanos-Zacarías, C. , Á, Domínguez-Rebolledo, L. , Us-Camas, R. , Baeza-Rodríguez, J. , Zamora-Bustillos, R. , Rodríguez-Salinas, A. , Vivas-Rodríguez, J. , Ramón-Ugalde, J. and Loeza-Concha, H. (2025). Epigenetic mechanisms that interact in the development of social insects. Open Access Library Journal, 12, e14693. doi: http://dx.doi.org/10.4236/oalib.1114693.
Snell-Rood, E.C. (2013) An Overview of the Evolutionary Causes and Conse-quences of Behavioural Plasticity. Animal Behaviour, 85, 1004-1011. https://doi.org/10.1016/j.anbehav.2012.12.031
Weiner, S.A. and Toth, A.L. (2012) Epigenetics in Social Insects: A New Direction for Understanding the Evolution of Castes. Genetics Research International, 2012, Article ID: 609810. https://doi.org/10.1155/2012/609810
Cridge, A., Harrop, T., Lovegrove, M., Remnant, E. and Dearden, P. (2017) Nutrition and Epigenetic Change in Insects: Evidence and Implications. Advances in Insect Physiology, 53, 31-54. https://doi.org/10.1016/bs.aiip.2017.06.001
Zhang, T. and Meaney, M.J. (2010) Epigenetics and the Environmental Regulation of the Ge-nome and Its Function. Annual Review of Psychology, 61, 439-466. https://doi.org/10.1146/annurev.psych.60.110707.163625
Lian, T., Gaur, U., Yang, D., Li, D., Li, Y. and Yang, M. (2015) Epigenetic Mechanisms of Dietary Restriction Induced Aging in Drosophila. Experimental Gerontology, 72, 38-44. https://doi.org/10.1016/j.exger.2015.08.015
Ford, D. (2013) Honeybees and Cell Lines as Models of DNA Methylation and Aging in Response to Diet. Experimental Gerontology, 48, 614-619. https://doi.org/10.1016/j.exger.2012.07.010
Glastad, K.M., Gokhale, K., Liebig, J. and Goodisman, M.A.D. (2016) The Caste- and Sex-Specific DNA Methylome of the Termite Zootermopsis Nevadensis. Scientific Reports, 6, Arti-cle No. 37110. https://doi.org/10.1038/srep37110
Alvarado, S., Raja-kumar, R., Abouheif, E. and Szyf, M. (2015) Epigenetic Variation in the EGFR Gene Generates Quantitative Variation in a Complex Trait in Ants. Nature Communications, 6, Article No. 6513. https://doi.org/10.1038/ncomms7513
Holman, L., Trontti, K. and Helanterä, H. (2016) Queen Pheromones Modulate DNA Methyltransferase Ac-tivity in Bee and Ant Workers. Biology Letters, 12, Article ID: 20151038. https://doi.org/10.1098/rsbl.2015.1038
Foret, S., Kucharski, R., Pit-telkow, Y., Lockett, G.A. and Maleszka, R. (2009) Epigenetic Regulation of the Honey Bee Transcriptome: Unravelling the Nature of Methylated Genes. BMC Genomics, 10, Article No. 472. https://doi.org/10.1186/1471-2164-10-472
Liberti, J., Görner, J., Welch, M., Dosselli, R., Schiøtt, M., Ogawa, Y., et al. (2019) Seminal Fluid Compromises Visual Perception in Honeybee Queens Reducing Their Survival during Addi-tional Mating Flights. eLife, 8, e45009. https://doi.org/10.7554/elife.45009
Zhuo, J., Lei, C., Shi, J., Xu, N., Xue, W., Zhang, M., et al. (2017) TRA-2 Mediates Cross-Talk between Sex Determination and Wing Polyphenism in Female Nilaparvata lugens. Genet-ics, 207, 1067-1078. https://doi.org/10.1534/genetics.117.300328
Chemnitz, J., von Ho-ermann, C., Ayasse, M. and Steiger, S. (2020) The Impact of Environmental Factors on the Efficacy of Chemical Communication in the Burying Beetle (Cole-optera: Silphidae). Journal of Insect Science, 20, Article No. 3. https://doi.org/10.1093/jisesa/ieaa061
Ma, R., Rangel, J. and Grozinger, C.M. (2019) Honey Bee (Apis mellifera) Larval Pheromones May Regulate Gene Expression Related to Foraging Task Specialization. BMC Genomics, 20, Article No. 592. https://doi.org/10.1186/s12864-019-5923-7
Pegoraro, M., Marshall, H., Lonsdale, Z.N. and Mallon, E.B. (2017) Do Social Insects Support Haig’s Kin Theory for the Evolution of Genomic Imprinting? Epigenetics, 12, 725-742. https://doi.org/10.1080/15592294.2017.1348445
Gotoh, H., Miyakawa, H., Ishikawa, A., Ishikawa, Y., Sugime, Y., Emlen, D.J., et al. (2014) Develop-mental Link between Sex and Nutrition; Doublesex Regulates Sex-Specific Man-dible Growth via Juvenile Hormone Signaling in Stag Beetles. PLOS Genetics, 10, e1004098. https://doi.org/10.1371/journal.pgen.1004098
Suzuki, M.G., Funaguma, S., Kanda, T., Tamura, T. and Shimada, T. (2005) Role of the Male BmDSX Protein in the Sexual Differentiation of Bombyx mori. Evolution & Development, 7, 58-68. https://doi.org/10.1111/j.1525-142x.2005.05007.x
Biewer, M., Schle-singer, F. and Hasselmann, M. (2015) The Evolutionary Dynamics of Major Regulators for Sexual Development among Hymenoptera Species. Frontiers in Genetics, 6, Article 124. https://doi.org/10.3389/fgene.2015.00124
Brito, D.V., Silva, C.G.N., Hasselmann, M., Viana, L.S., Astolfi-Filho, S. and Carvalho-Zilse, G.A. (2015) Molecular Characterization of the Gene Feminizer in the Stingless Bee Melipona interrupta (Hymenoptera: Apidae) Reveals Association to Sex and Caste Devel-opment. Insect Biochemistry and Molecular Biology, 66, 24-30. https://doi.org/10.1016/j.ibmb.2015.09.008
Lyko, F. and Maleszka, R. (2011) Insects as Innovative Models for Functional Studies of DNA Methylation. Trends in Genetics, 27, 127-131. https://doi.org/10.1016/j.tig.2011.01.003
Lucas, K.J., Zhao, B., Liu, S. and Raikhel, A.S. (2015) Regulation of Physiological Processes by MicroRNAs in Insects. Current Opinion in Insect Science, 11, 1-7. https://doi.org/10.1016/j.cois.2015.06.004
Ashby, R., Forêt, S., Searle, I. and Maleszka, R. (2016) MicroRNAs in Honey Bee Caste Determina-tion. Scientific Reports, 6, Article No. 18794. https://doi.org/10.1038/srep18794
Watson, O.T., Buch-mann, G., Young, P., Lo, K., Remnant, E.J., Yagound, B., et al. (2022) Abundant Small RNAs in the Reproductive Tissues and Eggs of the Honey Bee, Apis mellif-era. BMC Genomics, 23, Article No. 257. https://doi.org/10.1186/s12864-022-08478-9
Kiuchi, T., Koga, H., Kawamoto, M., Shoji, K., Sakai, H., Arai, Y., et al. (2014) A Single Fe-male-Specific piRNA Is the Primary Determiner of Sex in the Silkworm. Nature, 509, 633-636. https://doi.org/10.1038/nature13315
Castañeda, J., Genzor, P. and Bortvin, A. (2011) piRNAs, Transposon Silencing, and Germline Genome Integrity. Mutation Research—Fundamental and Molecular Mecha-nisms of Mutagenesis, 714, 95-104. https://doi.org/10.1016/j.mrfmmm.2011.05.002
Homolka, D., Pandey, R.R., Goriaux, C., Brasset, E., Vaury, C., Sachidanandam, R., et al. (2015) PIWI Slicing and RNA Elements in Precursors Instruct Directional Primary piRNA Bi-ogenesis. Cell Reports, 12, 418-428. https://doi.org/10.1016/j.celrep.2015.06.030
Hu, H., Bezabih, G., Feng, M., Wei, Q., Zhang, X., Wu, F., et al. (2019) In-Depth Proteome of the Hypo-pharyngeal Glands of Honeybee Workers Reveals Highly Activated Protein and Energy Metabolism in Priming the Secretion of Royal Jelly. Molecular & Cellular Proteomics, 18, 606-621. https://doi.org/10.1074/mcp.ra118.001257
Alhosin, M. (2023) Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenetics Insights, 16, 1-11. https://doi.org/10.1177/25168657231213717
Wang, Y., Azevedo, S.V., Hartfelder, K. and Amdam, G. (2013) Insulin-Like Peptides (AmILP1 and AmILP2) Differentially Affect Female Caste Development in the Honey Bee (Apis mellifera). Journal of Experimental Biology, 216, 4347-4357. https://doi.org/10.1242/jeb.085779
Law, J.A. and Jacobsen, S.E. (2010) Establishing, Maintaining and Modifying DNA Methylation Patterns in Plants and Animals. Nature Reviews Genetics, 11, 204-220. https://doi.org/10.1038/nrg2719
Yang, X., Chen, D., Zheng, S., Yi, M., Wang, S., Liu, Y., et al. (2023) The Prmt5-Vasa Module Is Essential for Sper-matogenesis in Bombyx mori. PLOS Genetics, 19, e1010600. https://doi.org/10.1371/journal.pgen.1010600
Foret, S., Kucharski, R., Pellegrini, M., Feng, S., Jacobsen, S.E., Robinson, G.E., et al. (2012) DNA Meth-ylation Dynamics, Metabolic Fluxes, Gene Splicing, and Alternative Phenotypes in Honey Bees. Proceedings of the National Academy of Sciences of the United States of America, 109, 4968-4973. https://doi.org/10.1073/pnas.1202392109
Li-Byarlay, H., Li, Y., Stroud, H., Feng, S., Newman, T.C., Kaneda, M., et al. (2013) RNA Interference Knock-down of DNA Methyl-Transferase 3 Affects Gene Alternative Splicing in the Honey Bee. Proceedings of the National Academy of Sciences of the United States of America, 110, 12750-12755. https://doi.org/10.1073/pnas.1310735110
Lyko, F., Foret, S., Kucharski, R., Wolf, S., Falckenhayn, C. and Maleszka, R. (2011) Correction: The Honey Bee Epigenomes: Differential Methylation of Brain DNA in Queens and Workers. PLOS Biology, 9. https://doi.org/10.1371/annotation/2db9ee19-faa4-43f2-af7a-c8aeacca8037
Jarau, S., van Veen, J.W., Twele, R., Reichle, C., Gonzales, E.H., Aguilar, I., et al. (2010) Workers Make the Queens in Melipona Bees: Identification of Geraniol as a Caste Determining Compound from Labial Glands of Nurse Bees. Journal of Chemical Ecology, 36, 565-569. https://doi.org/10.1007/s10886-010-9793-3
Shukla, S., Kavak, E., Gregory, M., Imashimizu, M., Shutinoski, B., Kashlev, M., et al. (2011) CTCF-Promoted RNA Polymerase II Pausing Links DNA Methylation to Splicing. Nature, 479, 74-79. https://doi.org/10.1038/nature10442
Mao, W., Schuler, M.A. and Berenbaum, M.R. (2015) A Dietary Phytochemical Alters Caste-Associated Gene Expression in Honey Bees. Science Advances, 1, e1500795. https://doi.org/10.1126/sciadv.1500795
Cardoso-Júnior, C.A.M., Fu-jimura, P.T., Santos-Júnior, C.D., Borges, N.A., Ueira-Vieira, C., Hartfelder, K., et al. (2017) Epigenetic Modifications and Their Relation to Caste and Sex Deter-mination and Adult Division of Labor in the Stingless Bee Melipona scutellaris. Genetics and Molecular Biology, 40, 61-68. https://doi.org/10.1590/1678-4685-gmb-2016-0242
Dickman, M.J., Kucharski, R., Maleszka, R. and Hurd, P.J. (2013) Extensive Histone Post-Translational Modification in Honey Bees. Insect Biochemistry and Molecu-lar Biology, 43, 125-137. https://doi.org/10.1016/j.ibmb.2012.11.003
Chiang, R.G. and Chiang, J.A. (2017) Reproductive Physiology in the Blood Feeding Insect, Rhod-nius prolixus, from Copulation to the Control of Egg Production. Journal of In-sect Physiology, 97, 27-37. https://doi.org/10.1016/j.jinsphys.2016.06.001
Hernández-Martínez, S., Rivera-Perez, C., Nouzova, M. and Noriega, F.G. (2015) Coordinated Changes in JH Biosynthesis and JH Hemolymph Titers in Aedes aegypti Mosquitoes. Journal of Insect Physiology, 72, 22-27. https://doi.org/10.1016/j.jinsphys.2014.11.003
Mirth, C.K. and Shin-gleton, A.W. (2014) The Roles of Juvenile Hormone, Insulin/Target of Rapamy-cin, and Ecydsone Signaling in Regulating Body Size in Drosophila. Communica-tive & Integrative Biology, 7, e971568. https://doi.org/10.4161/cib.29240
Kuroda, M.I., Hilfiker, A. and Lucche-si, J.C. (2016) Dosage Compensation in Drosophila—A Model for the Coordinate Regulation of Transcription. Genetics, 204, 435-450. https://doi.org/10.1534/genetics.115.185108
Palmer, M.J., Mergner, V.A., Richman, R., Manning, J.E., Kuroda, M.I. and Lucchesi, J.C. (1993) The Male-Specific Lethal-One (MSL-1) Gene of Drosophila Melanogaster Encodes a Novel Protein That Associates with the X Chromosome in Males. Genetics, 134, 545-557. https://doi.org/10.1093/genetics/134.2.545
Hartfelder, K., Guidugli-Lazzarini, K.R., Cervoni, M.S., Santos, D.E. and Humann, F.C. (2015) Old Threads Make New Tapestry—Rewiring of Signalling Pathways Underlies Caste Phenotypic Plasticity in the Honey Bee, Apis mellifera L. Advances in In-sect Physiology, 48, 1-36. https://doi.org/10.1016/bs.aiip.2014.12.001
Kucharski, R., Maleszka, J., Foret, S. and Maleszka, R. (2008) Nutritional Control of Reproductive Status in Honey-bees via DNA Methylation. Science, 319, 1827-1830. https://doi.org/10.1126/science.1153069
Barth, J.M.I., Szabad, J., Hafen, E. and Köhler, K. (2010) Autophagy in Drosophila Ovaries Is Induced by Star-vation and Is Required for Oogenesis. Cell Death & Differentiation, 18, 915-924. https://doi.org/10.1038/cdd.2010.157
Cardoso-Júnior, C.A.M., Silva, R.P., Borges, N.A., de Carvalho, W.J., Walter, S.L., Simões, Z.L.P., et al. (2017) Methyl Farnesoate Epoxidase (mfe) Gene Expression and Juvenile Hormone Titers in the Life Cycle of a Highly Eusocial Stingless Bee, Melipona scutellaris. Journal of Insect Physiology, 101, 185-194. https://doi.org/10.1016/j.jinsphys.2017.08.001
Rachinsky, A. and Hart-felder, K. (1990) Corpora Allata Activity, a Prime Regulating Element for Caste-Specific Juvenile Hormone Titre in Honey Bee Larvae (Apis mellifera Car-nica). Journal of Insect Physiology, 36, 189-194. https://doi.org/10.1016/0022-1910(90)90121-u
Lockett, G., Wilkes, F., Helliwell, P. and Maleszka, R. (2014) Contrasting Effects of Histone Deacetylase Inhibitors on Reward and Aversive Olfactory Memories in the Honey Bee. In-sects, 5, 377-398. https://doi.org/10.3390/insects5020377
Li, W., Liu, M., Zhuang, Z., Gao, L., Song, J. and Zhou, S. (2024) The Mirna–mrna Modules Enhance Juvenile Hormone Biosynthesis for Insect Vitellogenesis and Egg Pro-duction. Insect Science, 32, 1227-1240. https://doi.org/10.1111/1744-7917.13451
Drewell, R.A., Bush, E.C., Remnant, E.J., Wong, G.T., Beeler, S.M., Stringham, J.L., et al. (2014) The Dynamic DNA Meth-ylation Cycle from Egg to Sperm in the Honey Bee Apis mellifera. Development, 141, 2702-2711. https://doi.org/10.1242/dev.110163
Cunningham, C.B., Shelby, E.A., McKinney, E.C., Schmitz, R.J., Moore, A.J. and Moore, P.J. (2023) The Role of Dmnt1 during Spermatogenesis of the Insect Oncopeltus fasciatus. Epigenetics & Chromatin, 16, Article No. 28. https://doi.org/10.1186/s13072-023-00496-5
Oldroyd, B.P., Allsopp, M.H., Roth, K.M., Remnant, E.J., Drewell, R.A. and Beekman, M. (2014) A Par-ent-Of-Origin Effect on Honeybee Worker Ovary Size. Proceedings of the Royal Society B: Biological Sciences, 281, Article ID: 20132388. https://doi.org/10.1098/rspb.2013.2388
Ishizu, H., Siomi, H. and Siomi, M.C. (2012) Biology of Piwi-Interacting RNAs: New Insights into Bio-genesis and Function Inside and Outside of Germlines. Genes & Development, 26, 2361-2373. https://doi.org/10.1101/gad.203786.112