Optimizing the drying conditions prior to processing Irvingia gabonensis kernels into vegetable oil is a crucial step in preserving the quality of the final product. This study aimed to evaluate the influence of two drying methods (air-drying and oven-drying) on the quality parameters of the extracted oil and the resulting oil cakes. The results showed that oven-dried kernels exhibited a significantly lower moisture content (0.58 ± 0.01%) compared to air-dried kernels (2.44 ± 0.01%). The oil yields were 62.71 ± 7.65% for air-dried kernels and 74.68 ± 9.60% for oven-dried ones. The oils extracted from air-dried and oven-dried kernels presented similar values, with peroxide indices of 0.13 ± 0.03 and 0.14 ± 0.01 meq O2/kg, acid values of 0.79 ± 0.08 and 0.98 ± 0.04 mg KOH/g, and saponification values of 179.55 ± 3.97 and 178.15 ± 9.92 mg KOH/g, respectively. The oil cakes obtained from air-dried and oven-dried kernels showed, respectively, protein contents of 19.06 ± 0.36% and 18.97 ± 0.62%, ash contents of 8.58 ± 0.41% and 7.68 ± 0.12%, potassium contents of 2.30 g/100 g and 1.95 g/100 g, calcium contents of 0.79 g/100 g and 0.82 g/100 g, sodium contents of 0.73 g/100 g and 0.64 g/100 g, phosphorus contents of 0.68 g/100 g and 0.62 g/100 g, magnesium contents of 0.40 ± 0.06 g/100 g and 0.33 ± 0.03 g/100 g, and identical iron contents of 0.01 ± 0.001 g/100 g. Statistical analysis revealed no significant differences between the two drying methods for most of the oil quality parameters and the chemical characteristics of the oil cakes. Nevertheless, air drying at 25˚C better preserves most of the chemical parameters of both the oil and the oil cake, whereas oven drying at 60˚C better preserves phosphorus.
Cite this paper
Nsakani, J. M. , Yoca, J. E. and Tsieri, M. M. (2026). Influence of Drying Methods on the Chemical Characteristics of Irvingia gabonensis Kernel Oil and Oil Cakes. Open Access Library Journal, 13, e14657. doi: http://dx.doi.org/10.4236/oalib.1114657.
Hassan, Y.R., El-Shiekh, R.A., El Hefnawy, H.M. and Michael, C.G. (2024) Irvingia gabonensis Baill. (African Mango): A Com-prehensive Review of Its Ethnopharmacological Significance, Unveiling Its Long-Standing History and Therapeutic Potential. Journal of Ethnopharmacology, 326, Article ID: 117942. https://doi.org/10.1016/j.jep.2024.117942
Ingram, V., Ewane, M., Ndumbe, L.N. and Awono, A. (2017) Challenges to Governing Sustainable Forest Food: Irvingia spp. from Southern Cameroon. Forest Policy and Economics, 84, 29-37. https://doi.org/10.1016/j.forpol.2016.12.014
Coulibaly, M., Kouamé, C., N’dri, D., Kouassi, N., Pereko, K. and Amani, G. (2018) Effect of Post-Harvest Traditional Technologies on the Nutrient Content and Antioxidant Compounds of Defatted Flours from Ricinodendron heudelotti (Baill. Pierre Ex Pax) Seed Kernels. Technologies, 6, Article 37. https://doi.org/10.3390/technologies6020037
Dahouenon-Ahoussi, E., Djenontin, T., Codjia, D., Tchobo, F., Alitonou, A., Dangou, J., et al. (2013) Morphologie des fruits et quelques caractéristiques physique et chimique de l’huile et des tourteaux de Irvingia gabonensis (Irvingiaceae). International Journal of Biological and Chemical Sciences, 6, 2263-2273. https://doi.org/10.4314/ijbcs.v6i5.32
Day, L. (2013) Proteins from Land Plants—Potential Resources for Human Nutrition and Food Security. Trends in Food Science & Technology, 32, 25-42. https://doi.org/10.1016/j.tifs.2013.05.005
Mateus-Reguengo, L., Barbosa-Pereira, L., Rembangouet, W., Bertolino, M., Giordano, M., Rojo-Poveda, O., et al. (2019) Food Applications of Irvingia gabonensis (Aubry-Lecomte Ex. O’rorke) Baill., the ‘Bush Mango’: A Review. Critical Reviews in Food Science and Nutrition, 60, 2446-2459. https://doi.org/10.1080/10408398.2019.1646704
Noumi, G.B., Njouokam, M., Njiné, C.B., Ngameni, E. and Kapseu, C. (2011) Effet du séchage sur le rendement et la qualité de l’huile extraite de la pulpe de safou. Tropicultura, 29, 138-142.
Sena-Moreno, E., Pardo, J.E., Catalán, L., Gómez, R., Pardo-Giménez, A. and Alvarez‐Ortí, M. (2015) Drying Temperature and Extraction Method Influence Physicochemical and Sensory Characteristics of Pistachio Oils. European Journal of Lipid Science and Technology, 117, 684-691. https://doi.org/10.1002/ejlt.201400366
Elghazali, M.N., Osman, A.A., Abdullah, E.A. and Abdrabu, E.A. (2025) The Impact of Sun and Electric Oven Drying Methods on the Chem-ical Composition of Some Fruits and Vegetables. Aswan University Journal of Sciences and Technology, 5, 113-128. https://doi.org/10.21608/aujst.2025.348150.1159
Ekpe, O.O., Umoh, I.B. and Eka, O.U. (2007) L’effet d’une Méthode de Traitement Typiquement Rurale sur la Composition Rapprochée et le Profil de l’Acide Aminé du Noyau de la Mangue Sauvage (Irvingia gabonensis). African Journal of Food Agriculture Nutrition and Development, 7, 12.
Martin-Prével, P., Gagnard, J. and Gautier, P. (1984) L’Analyse Végétale dans le Contrôle de l’Alimentation des Plantes tempérées et tropicales. Lavoisier, 810 p.
Mwamba, I., et al. (2017) Comparison of Two Drying Methods of Mango (Oven and Solar Drying). MOJ Food Processing & Technology, 5, 240-243. https://doi.org/10.15406/mojfpt.2017.05.00118
Rani, R. and Badwaik, L.S. (2021) Functional Properties of Oilseed Cakes and Defatted Meals of Mustard, Soybean and Flaxseed. Waste and Biomass Valorization, 12, 5639-5647. https://doi.org/10.1007/s12649-021-01407-z
Abdullah, M.H.R.O., Ch’ng, P.E. and Lim, T.H. (2011) Some Physical Properties of Parkia Speciosa Seeds. International Conference on Food Engineering and Biotechnology, 9, 43-47.
D, M., Saha, D., Gupta, R., Bhadwal, S., Arora, S., Kumar, P., et al. (2020) Oil Expelling from Whole and Dehulled Sunflower Seeds: Optimization of Screw Pressing Parameters and Physico-Chemical Quality. International Journal of Chemical Studies, 8, 4002-4009. https://doi.org/10.22271/chemi.2020.v8.i4ay.10274
Tiencheu, B., Claudia Egbe, A., Achidi, A.U., Ngongang, E.F.T., Tenyang, N., Tonfack Djikeng, F., et al. (2021) Effect of Oven and Sun Drying on the Chemical Properties, Lipid Profile of Soursop (Annona muricata) Seed Oil, and the Functional Properties of the Defatted Flour. Food Science & Nutrition, 9, 4156-4168. https://doi.org/10.1002/fsn3.2380
Candra Dewi, D., Mahdi, C., Sulistyarti, H. and Aulanniam, A. (2024) Alternative Techniques for Animal Fat Authentication Based on Microscopic Crystal Pattern and Fatty Acid Composition Using Gas Chromatography-Mass Spectrometry (GC-MS). The Journal of Pure and Applied Chemistry Research, 13, 102-116. https://doi.org/10.21776/ub.jpacr.2024.013.02.3351
Ivanova, M., Hanganu, A., Dumitriu, R., Tociu, M., Ivanov, G., Stavarache, C., et al. (2022) Saponification Value of Fats and Oils as Determined from 1H-NMR Data: The Case of Dairy Fats. Foods, 11, Article 1466. https://doi.org/10.3390/foods11101466
FAO/WHO (2001) Fats and Oil and Related Products, Food Standard Program. Codex Alimentarius Commission. Food and Agriculture Organization of United Nations. 33-35. https://www.fao.org/4/y2774e/y2774e00.htm
Shen, Y., Lu, T., Liu, X., Zhao, M., Yin, F., Rakariyat-ham, K., et al. (2020) Improving the Oxidative Stability and Lengthening the Shelf Life of DHA Algae Oil with Composite Antioxidants. Food Chemistry, 313, Article ID: 126139. https://doi.org/10.1016/j.foodchem.2019.126139
Mihaylova, D., Gandova, V., Deseva, I., Tschuikowa, S., Schalow, S. and Westphal, G. (2020) Arrhenius Equation Modeling for the Oxidative Stability Evaluation of Echium Oil Enriched with a Natural Preservative. European Journal of Lipid Science and Technology, 122, Article ID: 2000118. https://doi.org/10.1002/ejlt.202000118
Omosuli, S.V., Oloye, D.A. and Ibrahim, T.A. (2017) Effect of Drying Methods on the Physicochemical Properties and Fatty Acid Composition of Moringa Seeds Oil. Archives of Food and Nutritional Science, 1, 27-32. https://doi.org/10.29328/journal.afns.1001005
Novidzro, K.M., Wokpor, K., Fagla, B.A., Koudouvo, K., Dotse, K., Osseyi, E., et al. (2019) Etude de quelques paramètres physicochimiques et analyse des éléments minéraux, des pig-ments chlorophylliens et caroténo?des de l’huile de graines de Griffonia simplicifolia. International Journal of Biological and Chemical Sciences, 13, 2360-2373. https://doi.org/10.4314/ijbcs.v13i4.38
Etong, D.I., Mustapha, A.O. and Taleat, A.A. (2014) Physicochemical Properties and Fatty Acid Composition of Dikanut (Irvingia gabonensis) Seed Oil. Research Journal of Chemical Sciences, 4, 70-74.
Conseil Oléicole International (2011) Norme commerciale applicable aux huiles d’olive et aux huiles de grignons d’olive. T. 15/NC no 3/Rév. 6. 17p. Conversion and Management, 40, 657-667. https://www.internationaloliveoil.org/wp-content/uploads/2022/05/COI-T15-NC3-Rev.-6-Novembre-2011-Fr.pdf
Saheed, A., Michael, A., Abiodum, A. and Adekunle, A. (2017) Chemical Composition and Industrial Benefits of Dikanut (Ir-vingia gabonensis) Kernel Oil: A Review. Nutrition & Food Sciences, 47, 741-751.
Schuck, P. (2011) Modifications des propriétés fonctionnelles des poudres de protéines laitières: Impact de la concentration et du séchage. Innovations Agronomiques, 13, 71-99.
Koumba Ibinga, S.K., Cerny, M., Lacroux, E., Fabre, J., Valentin, R., Merah, O., et al. (2022) Extraction and Physi-cochemical Composition of Irvingiagabonensis Almond Oil: A Potential Healthy Source of Lauric-Myristic Oil. Separations, 9, Article 207. https://doi.org/10.3390/separations9080207
Singh, R., Langyan, S., Sangwan, S., Rohtagi, B., Khandel-wal, A. and Shrivastava, M. (2022) Protein for Human Consumption from Oilseed Cakes: A Review. Frontiers in Sustainable Food Systems, 6, Article 856401. https://doi.org/10.3389/fsufs.2022.856401
Langyan, S., Yadava, P., Khan, F.N., Dar, Z.A., Singh, R. and Kumar, A. (2022) Sustaining Protein Nutrition through Plant-Based Foods. Frontiers in Nutrition, 8, Article 772573. https://doi.org/10.3389/fnut.2021.772573
Mgbemena, N.M., Ilechukwu, I., Okwunodolu, F.U., Chukwurah, J.O. and Lucky, I.B. (2019) Chemical Composition, Proximate and Phytochemical Analysis of Irvingia gabonen-sis and Irvingia wombolu Peels, Seed Coat, Leaves and Seeds. Ovidius University Annals of Chemistry, 30, 65-69. https://doi.org/10.2478/auoc-2019-0012
Ewere, E., Etim, O. and Usunobun, U. (2016) Proximate Composition, Mineral Content and Amino Acid Profile of Irvingia gabonensis O’Rorke Baill Leaf. International Journal of Scientific World, 5, 23-27. https://doi.org/10.14419/ijsw.v5i1.6969