Tetracyclines are broad-spectrum antibiotics that stop bacteria from producing proteins by blocking peptide elongation and aminoacyl-tRNA attachment, by reversibly binding to the 30S ribosomal subunit. Many tet genes, which are mobilized by integrons, transposons, and plasmids, encode tetracycline resistance mechanisms such as ribosome protection proteins (RPPs), efflux pumps, and enzymatic inactivation. These genes spread faster via mobile genetic elements, which allow for horizontal gene transfer between clinical, agricultural, and environmental bacterial species. Gram-positive and Gram-negative bacteria have been shown to carry more than 40 tet genes, with Escherichia coli having a particularly high incidence of efflux-mediated resistance. Tetracycline abuse has resulted in the selection of resistant strains, allowing tet genes to survive and diversify in microbial ecosystems. This mini review summarizes the mechanisms of tetracycline resistance. Understanding these mechanisms is critical for developing effective surveillance strategies and mitigating the harmful consequences of antibiotic resistance on public health.
Cite this paper
Isaiah, D. O. (2025). A Mini Review on the Mechanisms of Tetracycline Resistance in Bacterial Species. Open Access Library Journal, 12, e14333. doi: http://dx.doi.org/10.4236/oalib.1114333.
Chopra, I. and Roberts, M. (2001) Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiol-ogy of Bacterial Resistance. Microbiology and Molecular Biology Reviews, 65, 232-260. https://doi.org/10.1128/mmbr.65.2.232-260.2001
Salyers, A., Gupta, A. and Wang, Y. (2004) Human Intestinal Bacteria as Reservoirs for Antibiotic Resistance Genes. Trends in Microbiology, 12, 412-416. https://doi.org/10.1016/j.tim.2004.07.004
Thaker, M., Spanogiannopoulos, P. and Wright, G.D. (2010) The Tetra-cycline Resistome. Cellular and Molecular Life Sciences, 67, 419-431. https://doi.org/10.1007/s00018-009-0172-6
Sapunaric, F.M., Aldema-Ramos, M. and McMurry, L.M. (2005) Tet-racycline Resistance: Efflux, Mutation, and Other Mechanisms. In: Frontiers in Antimicrobial Resistance, ASM Press, 3-18. https://doi.org/10.1128/9781555817572.ch1
Al-Bahry, S., Al-Sharji, N., Yaish, M., Al-Musharafi, S. and Mahmoud, I. (2016) Diversity of Tetracycline Resistant Genes in Escherichia Coli from Human and Environmental Sources. The Open Biotechnology Journal, 10, 289-300. https://doi.org/10.2174/1874070701610010289
Nouri Ghara-jalar, S. and Hamidi Sofiani, V. (2017) Patterns of Efflux Pump Genes among Tetracycline Resistance Uropathogenic Esche-richia Coli Isolates Obtained from Human Urinary Infections. Jundishapur Journal of Microbiology, 10, e40884. https://doi.org/10.5812/jjm.40884
Truong-Bolduc, Q.C., Wang, Y. and Hooper, D.C. (2022) Role of staphylococcus Aureus Tet38 in Transport of Tetracycline and Its Regulation in a Salt Stress Environment. Journal of Bacteriology, 204, e00142-22. https://doi.org/10.1128/jb.00142-22
Zeryehun, T. and Bedada, B. (2013) Antimicrobial Re-sistant Pattern of Fecal Escherichia coli in Selected Broiler Farms of Eastern Hararge Zone, Ethiopia.
Webber, M.A. and Piddock, L.J. (2003) The Importance of Efflux Pumps in Bacterial Antibiotic Resistance. Journal of Antimicrobial Chemotherapy, 51, 9-11.
Mutuku, C., Gazdag, Z. and Melegh, S. (2022) Occurrence of Antibiotics and Bacterial Resistance Genes in Wastewater: Resistance Mechanisms and Antimicrobial Resistance Control Approaches. World Journal of Microbiology and Biotechnology, 38, Article No. 152. https://doi.org/10.1007/s11274-022-03334-0
Azab, H., Askar, A.M., El-Fadeal, N.M.A., Othman, A.A.A., Rayan, A.H. and Khattab, S. (2025) Detection of AdeAB, TetA, and TetB Efflux Pump Genes in Clinical Isolates of Tetracycline-Resistant Acinetobacter Baumannii from Patients of Suez Canal University Hospitals. BMC Microbiology, 25, Article No. 63. https://doi.org/10.1186/s12866-024-03735-1
Perewari, D.O., Otokunefor, K. and Agbagwa, O.E. (2022) Tetracycline-resistant Genes in Escherichia coli from Clinical and Nonclinical Sources in Rivers State, Nigeria. International Journal of Microbiology, 2022, 1-5. https://doi.org/10.1155/2022/9192424
Li, H., Liu, H., Qiu, L., Xie, Q., Chen, B., Wang, H., et al. (2023) Mechanism of Antibiotic Resistance Development in an Activated Sludge System under Tetracycline Pressure. Environmental Science and Pollution Research, 30, 90844-90857. https://doi.org/10.1007/s11356-023-28744-x
Otokunefor, K., Ujah, N.P., Perewari, D.O. and Agbagwa, O.E. (2023) Tetracycline Resistant Vibrio Species with tet Genes in Soil Samples from Two Dumpsites in Port-Harcourt, South-South, Nigeria. African Journal of Biomedical Research, 26, 447-450.
Arenz, S., Nguyen, F., Beckmann, R. and Wilson, D.N. (2015) Cryo-EM Structure of the Tetracycline Resistance Protein TetM in Complex with a Translating Ribosome at 3.9-Å Resolution. Proceedings of the National Academy of Sciences, 112, 5401-5406. https://doi.org/10.1073/pnas.1501775112
Dönhöfer, A., Franckenberg, S., Wickles, S., Berninghausen, O., Beckmann, R. and Wilson, D.N. (2012) Structural Basis for TetM-Mediated Tetracycline Resistance. Pro-ceedings of the National Academy of Sciences, 109, 16900-16905. https://doi.org/10.1073/pnas.1208037109
León-Sampedro, R., Novais, C., Peixe, L., Baquero, F. and Coque, T.M. (2016) Diversity and Evolution of the Tn 5801-Tet (M)-Like Integrative and Conjugative Elements among Enterococcus, Streptococcus, and Staphylococcus. Antimicrobial Agents and Chemotherapy, 60, 1736-1746. https://doi.org/10.1128/aac.01864-15
Gibreel, A., Tracz, D.M., Nonaka, L., Ngo, T.M., Connell, S.R. and Taylor, D.E. (2004) Incidence of Antibiotic Resistance Incampylobacter Jejuniisolated in Alberta, Canada, from 1999 to 2002, with Spe-cial Reference Totet(o)-Mediated Tetracycline Resistance. Antimicrobial Agents and Chemotherapy, 48, 3442-3450. https://doi.org/10.1128/aac.48.9.3442-3450.2004
Giovanetti, E., Brenciani, A., Lupidi, R., Roberts, M.C. and Varal-do, P.E. (2003) Presence of the tet (O) Gene in Erythromycin- And Tetracycline-Resistant Strains of streptococcus Pyogenes and Linkage with Either the mef (A) or the erm (A) Gene. Antimicrobial Agents and Chemotherapy, 47, 2844-2849. https://doi.org/10.1128/aac.47.9.2844-2849.2003
Li, L., Olsen, R.H., Shi, L., Ye, L., He, J. and Meng, H. (2016) Characterization of a Plasmid Carrying Cat, ermB and tetS Genes in a Foodborne Listeria Monocytogenes Strain and Uptake of the Plasmid by Cariogenic Streptococcus Mutans. International Journal of Food Microbiology, 238, 68-71. https://doi.org/10.1016/j.ijfoodmicro.2016.08.038
Bartha, N.A., Sóki, J., Urbán, E. and Nagy, E. (2011) Investiga-tion of the Prevalence of tetQ, tetX and tetX1 Genes in Bacteroides Strains with Elevated Tigecycline Minimum Inhibitory Concentrations. International Journal of Antimicrobial Agents, 38, 522-525. https://doi.org/10.1016/j.ijantimicag.2011.07.010
Aminov, R.I., Garrigues-Jeanjean, N. and Mackie, R.I. (2001) Mo-lecular Ecology of Tetracycline Resistance: Development and Validation of Primers for Detection of Tetracycline Resistance Genes Encoding Ribosomal Protection Proteins. Applied and Environmental Microbiology, 67, 22-32. https://doi.org/10.1128/aem.67.1.22-32.2001
Izghirean, N., Waidacher, C., Kittinger, C., Chyba, M., Koraimann, G., Pertschy, B., et al. (2021) Effects of Ribosomal Protein S10 Flexible Loop Mutations on Tetracycline and Tigecycline Suscep-tibility of Escherichia coli. Frontiers in Microbiology, 12, Article 663835. https://doi.org/10.3389/fmicb.2021.663835
Nogrado, K., Unno, T., Hur, H. and Lee, J. (2021) Tetracycline-resistant Bacte-ria and Ribosomal Protection Protein Genes in Soils from Selected Agricultural Fields and Livestock Farms. Applied Biological Chemistry, 64, Article No. 42. https://doi.org/10.1186/s13765-021-00613-6
Agersø, Y., Pedersen, A.G. and Aarestrup, F.M. (2006) Identification of Tn5397-Like and Tn916-Like Transposons and Diversity of the Tetracycline Re-sistance Gene Tet(m) in Enterococci from Humans, Pigs and Poultry. Journal of Antimicrobial Chemotherapy, 57, 832-839. https://doi.org/10.1093/jac/dkl069
Rusu, A. and Buta, E.L. (2021) The Development of Third-Generation Tetracycline Antibiotics and New Perspectives. Pharmaceutics, 13, Article 2085. https://doi.org/10.3390/pharmaceutics13122085
He, T., Wang, R., Liu, D., Walsh, T.R., Zhang, R., Lv, Y., et al. (2019) Emergence of Plasmid-Mediated High-Level Tigecycline Resistance Genes in Animals and Humans. Nature Microbi-ology, 4, 1450-1456. https://doi.org/10.1038/s41564-019-0445-2
Liu, D., Wang, T., Shao, D., Song, H., Zhai, W., Sun, C., et al. (2022) Structural Diversity of the Iscr2-Mediated Rolling-Cycle Transferable Unit Carrying tet(X4). Science of the Total Environ-ment, 826, Article 154010. https://doi.org/10.1016/j.scitotenv.2022.154010
Li, Y., Fu, Y., Qiu, Y., Liu, Q., Yin, M. and Zhang, L. (2023) Genomic Characterization of Tigecycline-Resistant Escherichia coli and Klebsiella Pneumoniae Isolates from Hospital Sewage. Fron-tiers in Microbiology, 14, Article 1282988. https://doi.org/10.3389/fmicb.2023.1282988
Xu, Y., Liu, L., Zhang, H. and Feng, Y. (2021) Co-Production of Tet(X) and MCR-1, Two Resistance Enzymes by a Single Plasmid. Environmental Mi-crobiology, 23, 7445-7464. https://doi.org/10.1111/1462-2920.15425
Jin, H., Jia, Q., Jin, X., Zhu, X., Wang, M., Sun, R., et al. (2024) Identification of Novel Tet(X6)-Tet(X2) Recombinant Variant in Elizabethkingia Menin-Goseptica from a Bullfrog Farm and Downstream River in China. Frontiers in Microbiology, 15, Article 1453801. https://doi.org/10.3389/fmicb.2024.1453801