This paper is concerned with the normalized ground states to the following lower critical fractional Kirchhoff-Choquard type equations. Using the constraint variational method, we establish the existence of normalized ground states and analyze their asymptotic properties as as
or .
Cite this paper
Zhang, H. (2025). Normalized Solutions to Fractional Kirchhoff-Choquard Type Equations with the Lower Critical Exponent. Open Access Library Journal, 12, e14046. doi: http://dx.doi.org/10.4236/oalib.1114046.
Di Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker's Guide to the Fractional Sobolev Spaces. Bulletin des Sciences Mathématiques, 136, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
Lions, J.L. (1978) On Some Ques-tions in Boundary Value Problems of Mathematical Physics. North-Holland Mathematics Studies, 30, 284-346. https://doi.org/10.1016/s0304-0208(08)70870-3
Ye, H. (2014) The Sharp Existence of Constrained Minimizers for a Class of Nonlinear Kirchhoff Equations. Mathematical Methods in the Applied Sciences, 38, 2663-2679. https://doi.org/10.1002/mma.3247
Ye, H. (2014) The Existence of Normalized Solutions for L2-Critical Constrained Problems Related to Kirchhoff Equations. Zeitschrift für angewandte Mathematik und Physik, 66, 1483-1497. https://doi.org/10.1007/s00033-014-0474-x
Li, G. and Ye, H. (2019) On the Concentration Phenomenon of L2-Subcritical Constrained Minimizers for a Class of Kirchhoff Equations with Potentials. Journal of Differential Equations, 266, 7101-7123. https://doi.org/10.1016/j.jde.2018.11.024
Li, G., Luo, X. and Yang, T. (2022) Normalized Solutions to a Class of Kirchhoff Equations with Sobolev Critical Exponent. Annales Fennici Mathematici, 47, 895-925. https://doi.org/10.54330/afm.120247
Frohlich, H. (1937) Theory of Electrical Breakdown in Ionic Crystal. Proceedings of the Royal Society of Lon-don. Series A—Mathematical and Physical Sciences, 160, 230-241.
Lieb, E.H. (1977) Existence and Uniqueness of the Minimizing So-lution of Choquard’s Nonlinear Equation. Studies in Applied Mathematics, 57, 93-105. https://doi.org/10.1002/sapm197757293
Moroz, I.M., Penrose, R. and Tod, P. (1998) Spherically-Symmetric Solutions of the Schroding-er-Newton Equations. Classical and Quantum Gravity, 15, 2733-2742. https://doi.org/10.1088/0264-9381/15/9/019
Moroz, V. and Van Schaftingen, J. (2013) Groundstates of Nonlinear Choquard Equations: Exist-ence, Qualitative Properties and Decay Asymptotics. Journal of Functional Anal-ysis, 265, 153-184. https://doi.org/10.1016/j.jfa.2013.04.007
Li, X. and Ma, S. (2019) Choquard Equations with Critical Nonlinearities. Communications in Contemporary Mathematics, 22, Article ID: 1950023. https://doi.org/10.1142/s0219199719500238
Meng, Y. and He, X. (2023) Normalized Solutions for the Fractional Choquard Equations with Har-dy-Littlewood-Sobolev Upper Critical Exponent. Qualitative Theory of Dynamical Systems, 23, Article No. 19. https://doi.org/10.1007/s12346-023-00875-z
Zhang, Z., Liu, J. and Sun, H. (2024) Existence and Asymptotical Behavior of L2-Normalized Standing Wave Solutions to HLS Lower Critical Choquard Equation with a Nonlocal Per-turbation. Qualitative Theory of Dynamical Systems, 23, Article No. 206. https://doi.org/10.1007/s12346-024-01060-6
Zhu, S., Che, G. and Chen, H. (2024) Existence and Asymptotic Behavior of Normalized Solutions for Choquard Equations with Kirchhoff Perturbation. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 119, Article No. 2. https://doi.org/10.1007/s13398-024-01668-y
Liang, S., Pucci, P. and Zhang, B. (2020) Multiple Solutions for Critical Choquard-Kirchhoff Type Equa-tions. Advances in Nonlinear Analysis, 10, 400-419. https://doi.org/10.1515/anona-2020-0119
Liu, L., Chen, H. and Yang, J. (2021) Normalized Solutions to the Fractional Kirchhoff Equations with a Per-turbation. Applicable Analysis, 102, 1229-1249. https://doi.org/10.1080/00036811.2021.1979222
Lieb, E.H. (1983) Sharp Constants in the Hardy-Littlewood-Sobolev and Related Inequalities. The Annals of Mathematics, 118, 349-374. https://doi.org/10.2307/2007032
Moroz, V. and Van Schaftingen, J. (2016) A Guide to the Choquard Equation. Journal of Fixed Point Theory and Applications, 19, 773-813. https://doi.org/10.1007/s11784-016-0373-1
Frank, R.L., Lenzmann, E. and Silvestre, L. (2015) Uniqueness of Radial Solutions for the Fractional Lapla-cian. Communications on Pure and Applied Mathematics, 69, 1671-1726. https://doi.org/10.1002/cpa.21591
Li, G. and Luo, X. (2019) Existence and Multiplicity of Normalized Solutions for a Class of Fractional Choquard Equations. Science China Mathematics, 63, 539-558. https://doi.org/10.1007/s11425-017-9287-6