全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Multi-Task Deep Learning for Predicting Depression Severity and Treatment Response Using Synthetic Neuroimaging: A Fully Controlled Simulation Framework

DOI: 10.4236/oalib.1113955, PP. 1-20

Subject Areas: Psychiatry & Psychology, Machine Learning, Artificial Intelligence

Keywords: Depression, Treatment Response Prediction, Multi-Task Deep Learning, Synthetic Neuroimaging, CNN, Brain Activation, Precision Psychiatry, Computational Psychiatry, Severity Estimation, Medical AI

Full-Text   Cite this paper   Add to My Lib

Abstract

Major Depressive Disorder (MDD) remains a complex and debilitating psychiatric condition characterized by heterogeneous symptom profiles and substantial variability in treatment response. Despite extensive clinical research, the process of selecting effective pharmacological interventions for individual patients continues to rely heavily on trial-and-error, leading to prolonged suffering and increased healthcare costs. Neuroimaging-based predictive models have shown potential to support precision psychiatry; however, their progress is limited by the scarcity of large, annotated clinical datasets, high imaging costs, and strict patient privacy regulations. In this study, we propose a comprehensive synthetic neuroimaging and clinical data simulation framework that enables the development and testing of deep learning models in a fully controlled environment. Specifically, we designed a multi-task Convolutional Neural Network (CNN) that simultaneously predicts depression severity as a continuous outcome and treatment response as a binary classification task. The synthetic data were generated with biologically plausible brain activation patterns, targeting clinically relevant regions such as the prefrontal cortex, cingulate cortex, amygdala, and hippocampus. Clinical variables, including age, gender, baseline severity, and treatment group, were integrated into the simulation to reflect real-world heterogeneity. The proposed model achieved a Mean Absolute Error (MAE) of 2.84 for severity prediction and an Area Under the Curve (AUC) of 0.80 for treatment response classification on the held-out test set. These results demonstrate that synthetic-data-driven pipelines can effectively support the development of predictive models for complex psychiatric disorders. Our approach provides a scalable and reproducible pathway for accelerating algorithm validation, minimizing ethical constraints, and enabling large-scale experimentation in mental health research and computational psychiatry.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Multi-Task Deep Learning for Predicting Depression Severity and Treatment Response Using Synthetic Neuroimaging: A Fully Controlled Simulation Framework. Open Access Library Journal, 12, e13955. doi: http://dx.doi.org/10.4236/oalib.1113955.

References

[1]  Marx, W., Penninx, B.W.J.H., Solmi, M., Furukawa, T.A., Firth, J., Carvalho, A.F., et al. (2023) Major Depressive Disorder. Nature Reviews Disease Primers, 9, Article No. 44. https://doi.org/10.1038/s41572-023-00454-1
[2]  Bromet, E.J., Andrade, L.H., Bruffaerts, R. and Williams, D.R. (2018) Major Depressive Disorder. In: Scott, K.M., et al., Eds., Mental Disorders around the World: Facts and Figures from the WHO World Mental Health Surveys, Cambridge University Press, 41-56. https://doi.org/10.1017/9781316336168.004
[3]  Gutiérrez-Rojas, L., Porras-Segovia, A., Dunne, H., Andrade-González, N. and Cervilla, J.A. (2020) Prevalence and Correlates of Major Depressive Disorder: A Systematic Review. Brazilian Journal of Psychiatry, 42, 657-672. https://doi.org/10.1590/1516-4446-2020-0650
[4]  Ferrari, A.J., Charlson, F.J., Norman, R.E., Patten, S.B., Freedman, G., Murray, C.J.L., et al. (2013) Bur-den of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLOS Medicine, 10, e1001547. https://doi.org/10.1371/journal.pmed.1001547
[5]  Maj, M., Stein, D.J., Parker, G., Zimmerman, M., Fava, G.A., De Hert, M., et al. (2020) The Clinical Characterization of the Adult Patient with Depression Aimed at Personalization of Management. World Psychiatry, 19, 269-293. https://doi.org/10.1002/wps.20771
[6]  Berk, M., Köhler-Forsberg, O., Turner, M., Penninx, B.W.J.H., Wrobel, A., Firth, J., et al. (2023) Comorbidity between Major Depressive Disorder and Physical Diseases: A Comprehensive Review of Epidemiology, Mechanisms and Management. World Psychiatry, 22, 366-387. https://doi.org/10.1002/wps.21110
[7]  Gold, S.M., Köh-ler-Forsberg, O., Moss-Morris, R., Mehnert, A., Miranda, J.J., Bullinger, M., et al. (2020) Comorbid Depression in Medical Diseases. Nature Reviews Disease Pri-mers, 6, Article No. 69. https://doi.org/10.1038/s41572-020-0200-2
[8]  Otte, C., Gold, S.M., Pen-ninx, B.W., Pariante, C.M., Etkin, A., Fava, M., et al. (2016) Major Depressive Disorder. Nature Reviews Disease Primers, 2, 1-20. https://doi.org/10.1038/nrdp.2016.65
[9]  Rush, A.J. (2007) The Varied Clinical Presentations of Major Depressive Disorder. Journal of Clinical Psychia-try, 68, 4-10.
[10]  Eichler, H., Abadie, E., Breckenridge, A., Flamion, B., Gus-tafsson, L.L., Leufkens, H., et al. (2011) Bridging the Efficacy-Effectiveness Gap: A Regulator’s Perspective on Addressing Variability of Drug Response. Nature Reviews Drug Discovery, 10, 495-506. https://doi.org/10.1038/nrd3501
[11]  Kravitz, R.L., Duan, N. and Braslow, J. (2004) Evidence-Based Medicine, Heterogeneity of Treatment Effects, and the Trouble with Averages. The Milbank Quarterly, 82, 661-687. https://doi.org/10.1111/j.0887-378x.2004.00327.x
[12]  Horwitz, R.I., Sing-er, B.H., Makuch, R.W. and Viscoli, C.M. (1996) Can Treatment That Is Helpful on Average Be Harmful to Some Patients? A Study of the Conflicting Information Needs of Clinical Inquiry and Drug Regulation. Journal of Clinical Epidemiology, 49, 395-400. https://doi.org/10.1016/0895-4356(95)00058-5
[13]  Lilienfeld, S.O., Ritschel, L.A., Lynn, S.J., Cautin, R.L. and Latzman, R.D. (2014) Why Ineffective Psychotherapies Appear to Work: A Taxonomy of Causes of Spurious Therapeu-tic Effectiveness. Perspectives on Psychological Science, 9, 355-387. https://doi.org/10.1177/1745691614535216
[14]  Hengartner, M.P. (2022) Evidence-Biased Antidepressant Prescription: Over-Medicalisation, Flawed Re-search, and Conflicts of Interest. Palgrave Macmillan.
[15]  Pardiñas, A.F., Ow-en, M.J. and Walters, J.T.R. (2021) Pharmacogenomics: A Road Ahead for Preci-sion Medicine in Psychiatry. Neuron, 109, 3914-3929. https://doi.org/10.1016/j.neuron.2021.09.011
[16]  Kirk, S.A. (2017) Mad Science: Psychiatric Coercion, Diagnosis, and Drugs. Routledge.
[17]  Lally, J. and MacCabe, J.H. (2015) Antipsychotic Medication in Schizophrenia: A Review. British Medical Bulletin, 114, 169-179. https://doi.org/10.1093/bmb/ldv017
[18]  Chiappini, S., Sampogna, G., Ventriglio, A., Menculini, G., Ricci, V., Pettorruso, M., et al. (2025) Emerging Strategies and Clinical Recommendations for the Management of Novel Depres-sion Subtypes. Expert Review of Neurotherapeutics, 25, 443-463. https://doi.org/10.1080/14737175.2025.2470973
[19]  Fu, C.H.Y. and Cos-tafreda, S.G. (2013) Neuroimaging-Based Biomarkers in Psychiatry: Clinical Opportunities of a Paradigm Shift. The Canadian Journal of Psychiatry, 58, 499-508. https://doi.org/10.1177/070674371305800904
[20]  Abi-Dargham, A. and Horga, G. (2016) The Search for Imaging Biomarkers in Psychiatric Disorders. Nature Medicine, 22, 1248-1255. https://doi.org/10.1038/nm.4190
[21]  Etkin, A., Powell, J. and Savitz, A.J. (2024) Opportunities for Use of Neuroimaging in De-Risking Drug Development and Improving Clinical Outcomes in Psychiatry: An Industry Perspective. Neu-ropsychopharmacology, 50, 258-268. https://doi.org/10.1038/s41386-024-01970-8
[22]  Comai, S., Manchia, M., Bosia, M., Miola, A., Poletti, S., Benedetti, F., et al. (2025) Moving toward Preci-sion and Personalized Treatment Strategies in Psychiatry. International Journal of Neuropsychopharmacology, 28, pyaf025. https://doi.org/10.1093/ijnp/pyaf025
[23]  McGrath, C.L., Kelley, M.E., Holtzheimer, P.E., Dunlop, B.W., Craighead, W.E., Franco, A.R., et al. (2013) Toward a Neuroimaging Treatment Selection Biomarker for Major Depressive Disorder. JAMA Psychiatry, 70, 821-829. https://doi.org/10.1001/jamapsychiatry.2013.143
[24]  Ketter, T.A., George, M.S., Kimbrell, T.A., Benson, B.E. and Post, R.M. (1996) Functional Brain Imag-ing, Limbic Function, and Affective Disorders. The Neuroscientist, 2, 55-65. https://doi.org/10.1177/107385849600200113
[25]  Lindquist, K.A. and Barrett, L.F. (2012) A Functional Architecture of the Human Brain: Emerging Insights from the Science of Emotion. Trends in Cognitive Sciences, 16, 533-540. https://doi.org/10.1016/j.tics.2012.09.005
[26]  Drevets, W.C. (2001) Neuroimaging and Neuropathological Studies of Depression: Implica-tions for the Cognitive-Emotional Features of Mood Disorders. Current Opinion in Neurobiology, 11, 240-249. https://doi.org/10.1016/s0959-4388(00)00203-8
[27]  Drevets, W.C., Price, J.L. and Furey, M.L. (2008) Brain Structural and Functional Abnormalities in Mood Disorders: Implications for Neurocircuitry Models of Depression. Brain Structure and Function, 213, 93-118. https://doi.org/10.1007/s00429-008-0189-x
[28]  Smucny, J., Shi, G. and Da-vidson, I. (2022) Deep Learning in Neuroimaging: Overcoming Challenges with Emerging Approaches. Frontiers in Psychiatry, 13, Article ID: 912600. https://doi.org/10.3389/fpsyt.2022.912600
[29]  Davatzikos, C. (2019) Ma-chine Learning in Neuroimaging: Progress and Challenges. NeuroImage, 197, 652-656. https://doi.org/10.1016/j.neuroimage.2018.10.003
[30]  Leming, M.J., Bron, E.E., Bruffaerts, R., Ou, Y., Iglesias, J.E., Gollub, R.L., et al. (2023) Challenges of Implementing Computer-Aided Diagnostic Models for Neu-roimages in a Clinical Setting. NPJ Digital Medicine, 6, Article No. 129. https://doi.org/10.1038/s41746-023-00868-x
[31]  Bacon, E.J., He, D., Achi, N.A.D., Wang, L., Li, H., Yao-Digba, P.D.Z., et al. (2024) Neuroimage Analysis Using Artificial Intelligence Approaches: A Systematic Review. Medical & Biolog-ical Engineering & Computing, 62, 2599-2627. https://doi.org/10.1007/s11517-024-03097-w
[32]  Lefort-Besnard, J., Pron, A., Clement, P., et al. (2025) Which Infrastructure Can I Use to Share Human Neuroimaging Data? A Guide for Researchers Based in the EU.
[33]  Aghdam, M.A., Bozdag, S. and Saeed, F. (2025) Machine-Learning Models for Alzheimer’s Disease Diagnosis Using Neuroimaging Data: Survey, Reproducibility, and Gen-eralizability Evaluation. Brain Informatics, 12, 1-27. https://doi.org/10.1186/s40708-025-00252-3
[34]  Halkiopoulos, C., Gkinto-ni, E., Aroutzidis, A. and Antonopoulou, H. (2025) Advances in Neuroimaging and Deep Learning for Emotion Detection: A Systematic Review of Cognitive Neuroscience and Algorithmic Innovations. Diagnostics, 15, Article No. 456. https://doi.org/10.3390/diagnostics15040456
[35]  Rosenblatt, M. (2025) Pitfalls of Neuroimaging Predictive Models of Individual Differences. PhD Diss., Yale University.
[36]  Sánchez, V., Güven, ç., Nápoles, G. and Postma, M.š. (2025) Data Augmentation Techniques for fMRI Data: A Technical Survey. IEEE Access, 13, 66529-66556. https://doi.org/10.1109/access.2025.3560395
[37]  Delgado-López, P.D., Cárdenas Montes, M., Troya García, J., Ocaña-Tienda, B., Cepeda, S., Martínez Martínez, R., et al. (2025) Artificial Intelligence in Neuro-Oncology: Methodo-logical Bases, Practical Applications and Ethical and Regulatory Issues. Clinical and Translational Oncology, 1-14. https://doi.org/10.1007/s12094-025-03948-4
[38]  Onciul, R., Tataru, C., Dumitru, A.V., Crivoi, C., Serban, M., Covache-Busuioc, R., et al. (2025) Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. Journal of Clinical Medicine, 14, Article No. 550. https://doi.org/10.3390/jcm14020550
[39]  Winslow, R.L., Trayanova, N., Geman, D. and Miller, M.I. (2012) Computational Medicine: Translating Models to Clinical Care. Science Translational Medicine, 4, 158rv11. https://doi.org/10.1126/scitranslmed.3003528
[40]  Bingham, C.S., Mer-genthal, A., Bouteiller, J.C., Song, D., Lazzi, G. and Berger, T.W. (2020) ROOTS: An Algorithm to Generate Biologically Realistic Cortical Axons and an Applica-tion to Electroceutical Modeling. Frontiers in Computational Neuroscience, 14, Article No. 13. https://doi.org/10.3389/fncom.2020.00013
[41]  Ha, T.N., Lubo-Robles, D., Marfurt, K.J. and Wallet, B.C. (2021) An In-Depth Analysis of Logarithmic Data Transformation and Per-Class Normalization in Machine Learning: Application to Unsupervised Classification of a Turbidite System in the Canterbury Basin, New Zealand, and Supervised Classification of Salt in the Eugene Island Minibasin, Gulf of Mexico. Interpretation, 9, T685-T710. https://doi.org/10.1190/int-2021-0008.1
[42]  Demircioğlu, A. (2024) The Effect of Feature Normalization Methods in Radiomics. Insights into Imaging, 15, Article No. 2. https://doi.org/10.1186/s13244-023-01575-7
[43]  Pei, X., Zhao, Y.h., Chen, L., Guo, Q., Duan, Z., Pan, Y., et al. (2023) Robustness of Ma-chine Learning to Color, Size Change, Normalization, and Image Enhancement on Micrograph Datasets with Large Sample Differences. Materials & Design, 232, Article ID: 112086. https://doi.org/10.1016/j.matdes.2023.112086
[44]  Marquand, A.F., Wolf-ers, T., Mennes, M., Buitelaar, J. and Beckmann, C.F. (2016) Beyond Lumping and Splitting: A Review of Computational Approaches for Stratifying Psychiatric Disorders. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 1, 433-447. https://doi.org/10.1016/j.bpsc.2016.04.002
[45]  Landi, I., Glicks-berg, B.S., Lee, H., Cherng, S., Landi, G., Danieletto, M., et al. (2020) Deep Rep-resentation Learning of Electronic Health Records to Unlock Patient Stratifica-tion at Scale. NPJ Digital Medicine, 3, Article No. 96. https://doi.org/10.1038/s41746-020-0301-z
[46]  Bird, A., Williams, C.K.I. and Hawthorne, C. (2022) Multi-Task Dynamical Systems. Journal of Machine Learning Research, 23, 1-52.
[47]  Aghapour, E. and Ayanian, N. (2021). Dou-ble Meta-Learning for Data Efficient Policy Optimization in Non-Stationary En-vironments. 2021 IEEE International Conference on Robotics and Automation (ICRA), Xian, 30 May-5 June 2021, 9935-9942. https://doi.org/10.1109/icra48506.2021.9561219
[48]  Shah, R.V., Grennan, G., Zafar-Khan, M., Alim, F., Dey, S., Ramanathan, D., et al. (2021) Personalized Machine Learning of Depressed Mood Using Wearables. Translational Psychia-try, 11, Article No. 338. https://doi.org/10.1038/s41398-021-01445-0
[49]  Amirhosseini, M.H., Ayodele, A.L. and Karami, A. (2024) Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. 2024 IEEE 12th International Conference on Intelligent Systems (IS), Varna, 29-31 August 2024, 1-7. https://doi.org/10.1109/IS61756.2024.10705185
[50]  Kathan, A., Harrer, M., Küster, L., Triantafyllopoulos, A., He, X., Milling, M., et al. (2022) Personal-ised Depression Forecasting Using Mobile Sensor Data and Ecological Momen-tary Assessment. Frontiers in Digital Health, 4, Article ID: 964582. https://doi.org/10.3389/fdgth.2022.964582
[51]  Bryan, A.C., Heinz, M.V., Salzhauer, A.J., Price, G.D., Tlachac, M.L. and Jacobson, N.C. (2024) Behind the Screen: A Narrative Review on the Translational Capacity of Passive Sensing for Mental Health Assessment. Biomedical Materials & Devices, 2, 778-810. https://doi.org/10.1007/s44174-023-00150-4
[52]  Carrle, F.P., Hollen-benders, Y. and Reichenbach, A. (2023) Generation of Synthetic EEG Data for Training Algorithms Supporting the Diagnosis of Major Depressive Disorder. Frontiers in Neuroscience, 17, Article ID: 1219133. https://doi.org/10.3389/fnins.2023.1219133
[53]  Xue, C., Kowshik, S.S., Lteif, D., Puducheri, S., Jasodanand, V.H., Zhou, O.T., et al. (2024) AI-Based Differential Diagnosis of Dementia Etiologies on Multimodal Data. Nature Medi-cine, 30, 2977-2989. https://doi.org/10.1038/s41591-024-03118-z
[54]  Berry, P., Dhanakshirur, R.R. and Khanna, S. (2025) Utilizing Large Language Models for Gastroenterol-ogy Research: A Conceptual Framework. Therapeutic Advances in Gastroenter-ology, 18, p.17562848251328577. https://doi.org/10.1177/17562848251328577
[55]  Lustberg, M.B., Kuderer, N.M., Desai, A., Bergerot, C. and Lyman, G.H. (2023) Mitigating Long-Term and Delayed Adverse Events Associated with Cancer Treatment: Implications for Survivorship. Nature Reviews Clinical Oncology, 20, 527-542. https://doi.org/10.1038/s41571-023-00776-9
[56]  Salz, T., Baxi, S.S., Raghunathan, N., Onstad, E.E., Freedman, A.N., Moskowitz, C.S., et al. (2015) Are We Ready to Predict Late Effects? A Systematic Review of Clinically Useful Prediction Models. European Journal of Cancer, 51, 758-766. https://doi.org/10.1016/j.ejca.2015.02.002
[57]  Rozanski, A., Blumenthal, J.A. and Kaplan, J. (1999) Impact of Psychological Factors on the Pathogenesis of Cardiovascular Disease and Implications for Therapy. Circulation, 99, 2192-2217. https://doi.org/10.1161/01.cir.99.16.2192
[58]  Castanheira, L., Silva, C., Cheniaux, E. and Telles-Correia, D. (2019) Neuroimaging Correlates of Depression—Implications to Clinical Practice. Frontiers in Psychiatry, 10, Article No. 703. https://doi.org/10.3389/fpsyt.2019.00703
[59]  Bi, B., Che, D. and Bai, Y. (2022) Neural Network of Bipolar Disorder: Toward Integration of Neu-roimaging and Neurocircuit-Based Treatment Strategies. Translational Psychia-try, 12, Article No. 143. https://doi.org/10.1038/s41398-022-01917-x
[60]  Wasserman, T. and Wasserman, L.D. (2019) Therapy and the Neural Network Model. Spring-er.
[61]  Vogt, B.A. and Limbic Cingulate Cortex_21 (2009) Regions and Subre-gions of Cingulate Neurobiology and Disease.
[62]  Dixon, M.L., Thiruchselvam, R., Todd, R. and Christoff, K. (2017) Emotion and the Prefrontal Cortex: An In-tegrative Review. Psychological Bulletin, 143, 1033-1081. https://doi.org/10.1037/bul0000096
[63]  Rao, H.S., Liu, W.s., Wang, H.H., Huang, I., He, Z. and Huang, X.L. (2025) A Scoping Review of Synthetic Data Generation for Biomedical Research and Applications.
[64]  Liu, R.B., Wei, J., Liu, F.Y., et al. (2024) Best Practices and Lessons Learned on Synthetic Da-ta.
[65]  Ghanadian, H., Nejadgholi, I. and Osman, H.A. (2024) Socially Aware Synthetic Data Generation for Suicidal Ideation Detection Using Large Language Models. IEEE Access, 12, 14350-14363. https://doi.org/10.1109/access.2024.3358206

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133