全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Research on Mine Target Detection Method Based on Improved YOLOv8

DOI: 10.4236/oalib.1113813, PP. 1-9

Subject Areas: Mineral Engineering

Keywords: Mining Autonomous Driving Vehicles, Object Detection, YOLOv8

Full-Text   Cite this paper   Add to My Lib

Abstract

Aiming at the complex environment such as uneven illumination and variable target scales in mines, achieving precise and realtime detection of potential collision targets such as personnel and equipment by autonomous mining vehicles is crucial for improving mine safety and work efficiency. To address the above problems, this paper proposes an improved algorithm based on YOLOv8. The Robust Feature Downsampling (RFD) module is introduced to solve the problem of small target feature loss, and the weighted Bidirectional Feature Pyramid Network (BiFPN) is adopted to enhance the multi-scale feature fusion capability. Experimental results show that the improved model achieves detection accuracies of 91.5% mAP and 86.1% F1-score on the self-built mine scene dataset, which are 3.3% and 2.6% higher than the original benchmark model YOLOv8-n, respectively. Meanwhile, the model complexity is significantly reduced. This algorithm ensures the efficient and accurate operation of the real-time obstacle detection system for unmanned loaders. 

Cite this paper

Li, M. (2025). Research on Mine Target Detection Method Based on Improved YOLOv8. Open Access Library Journal, 12, e3813. doi: http://dx.doi.org/10.4236/oalib.1113813.

References

[1]  王国法, 庞义辉, 任怀伟, 等. 矿山智能化建设的挑战与思考[J]. 智能矿山, 2022, 3(10): 2-15.
[2]  Bochkovskiy, A., Wang, C.Y. and Liao, H.Y.M. (2020) YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv: 2004.10934.
[3]  Redmon, J., Divvala, S., Girshick, R. and Farhadi, A. (2016) You Only Look Once: Unified, Real-Time Object Detection. 2016 IEEE Con-ference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27-30 June 2016, 779-788. https://doi.org/10.1109/cvpr.2016.91
[4]  Redmon, J. (2018) YOLOv3: An Incremental Improvement. arXiv: 1804.02767.
[5]  Redmon, J. and Farhadi, A. (2017) YOLO9000: Better, Faster, Stronger. 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, 21-26 July 2017, 6517-6525. https://doi.org/10.1109/cvpr.2017.690
[6]  周李兵, 于政乾, 卫健健, 等. 矿用无人驾驶车辆行人检测技术研究[J]. 工矿自动化, 2024, 50(10): 29-37.
[7]  寇发荣, 肖伟, 何海洋, 等. 基于改进YOLOv5的煤矿井下目标检测研究[J]. 电子与信息学报, 2023, 45(7): 2642-2649.
[8]  张传伟, 张天乐, 周李兵, 等. 基于GCDB-YOLOv8的矿用无人车井下运输巷道工作人员检测方法[J/OL]. 煤炭学报: 1-16. https://doi.org/10.13225/j.cnki.jccs.2024.1298, 2025-02-20.
[9]  董芳凯, 赵美卿, 黄伟龙. 煤矿井下暗光环境人员行为检测研究[J]. 工矿自动化, 2025, 51(1): 21-30, 144.
[10]  狄靖尧, 杨超宇. 基于改进Transformer的井下人员检测算法[J]. 科学技术与工程, 2024, 24(26): 11188-11194.
[11]  Lu, W., Chen, S., Tang, J., Ding, C.H.Q. and Luo, B. (2023) A Robust Feature Downsampling Module for Remote-Sensing Visual Tasks. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-12. https://doi.org/10.1109/tgrs.2023.3282048
[12]  Tan, M., Pang, R. and Le, Q.V. (2020) EfficientDet: Scalable and Efficient Object Detection. 2020 IEEE/CVF Conference on Computer Vision and Pat-tern Recognition (CVPR), Seattle, 13-19 June 2020, 10778-10787. https://doi.org/10.1109/cvpr42600.2020.01079

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133