全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Vehicle Carbon Neutral Path Analysis

DOI: 10.4236/oalib.1113809, PP. 1-14

Subject Areas: Transportation Engineering

Keywords: Low Carbon Path, Lightweight, New Energy Vehicles, Green Internal Combustion Engine Fuel

Full-Text   Cite this paper   Add to My Lib

Abstract

With the formulation of the “double carbon” target, the transportation industry has become an important part of the low carbon field, and the “decarbonization” target of the automobile industry has become imperative. This paper focuses on the automobile carbon neutrality, discusses the areas of automobile carbon footprint, and analyzes the path of automobile carbon neutrality. With the technical support and policy encouragement of the government, automobile enterprises in various countries promote the automobile to achieve the carbon peak and carbon neutral target at present. This article explains the three paths of automobile lightweighting and green internal combustion engine materials for new energy vehicles to explain the technological updates and industry development of automobile energy conservation and emission reduction and low-carbon development, providing a path reference for the goal of carbon neutrality. From those three paths, the development of the automobile industry needs higher and more perfect requirements for low-carbon technologies and low-carbon solutions in future. However, each carbon neutral path has its own barriers and needs to develop a more complete and closed-loop management application system for the path. The paper analyzes that each path brings new opportunities and challenges to the development of automobile industry to achieve the goal of carbon peak and carbon neutrality. Meanwhile, it has injected new impetus into the development of the automobile industry.

Cite this paper

Chen, X. (2025). Vehicle Carbon Neutral Path Analysis. Open Access Library Journal, 12, e3809. doi: http://dx.doi.org/10.4236/oalib.1113809.

References

[1]  余碧莹, 赵光普, 安润颖, 等. 碳中和目标下中国碳排放路径研究[J]. 北京理工大学学报(社会科学版), 2021, 23(2): 17-24.
[2]  习近平: 在第七十五届联合国大会一般性辩论上的讲话[N]. 2020-09-23.https://www.xinhuanet.com/politics/leaders/2020-09/22/c_1126527652.htm
[3]  代迪尔, 张宇辉. 双碳目标背景下中国汽车行业碳减排的经验与启示[J]. 海峡科技与产业, 2021, 34(10): 63-66.
[4]  常维, 刘斌, 祝月艳. 双碳目标下汽车产业发展趋势[J]. 汽车纵横, 2021(8): 31-35.
[5]  卓星. 中国工程院院士黄震: 可再生合成燃料有望使内燃机燃料取之不尽, 独立于化石能源, 实现碳中和和零碳排放[J]. 商用汽车, 2021(6): 84-85.
[6]  钱余海, 吴庆芳, 雷浩. 汽车轻量化材料及工艺的研究进展[J]. 大众科技, 2022, 24(2): 49-52.
[7]  杨谋. 汽车轻量化材料及制造工艺分析[J]. 南方农机, 2019, 50(20): 242.
[8]  马晓坤, 王瑞, 侯建峰, 等. 基于汽车轻量化的碳纤维复合材料应用分析[J]. 化工新型材料, 2020, 48(11): 223-226.
[9]  徐树杰, 董长青. 基于GREET汽车全生命周期能耗排放研究[J]. 汽车工艺与材料, 2014(2): 10-13.
[10]  González Palencia, J.C., Furubayashi, T. and Nakata, T. (2012) En-ergy Use and CO2 Emissions Reduction Potential in Passenger Car Fleet Using Zero Emission Vehicles and Lightweight Materials. Energy, 48, 548-565. https://doi.org/10.1016/j.energy.2012.09.041
[11]  Luk, J.M., Kim, H.C., De Kleine, R.D., Wallington, T.J. and MacLean, H.L. (2018) Greenhouse Gas Emis-sion Benefits of Vehicle Lightweighting: Monte Carlo Probabalistic Analysis of the Multi Material Lightweight Vehicle Glider. Transportation Research Part D: Transport and Environment, 62, 1-10. https://doi.org/10.1016/j.trd.2018.02.006
[12]  González Palencia, J.C., Sakamaki, T., Araki, M. and Shiga, S. (2015) Impact of Powertrain Electrifica-tion, Vehicle Size Reduction and Lightweight Materials Substitution on Energy Use, CO2 Emissions and Cost of a Passenger Light-Duty Vehicle Fleet. Energy, 93, 1489-1504. https://doi.org/10.1016/j.energy.2015.10.017
[13]  宋冬冬, 芮执元, 刘军, 等. 机床床身结构优化的轻量化技术[J]. 机械制造, 2012, 50(5): 65-69.
[14]  徐建全, 杨沿平. 纯电动汽车与传统汽车轻量化全生命周期多目标优化研究[J]. 汽车工程, 2019, 41(8): 885-891, 914.
[15]  陈文斐. 基于结构优化的汽车轻量化方法探索[J]. 汽车实用技术, 2019(24): 135-138.
[16]  王品健. 纯电动汽车动力电池包箱体结构轻量化设计与优化[D]: [硕士学位论文]. 长沙: 湖南大学, 2018.
[17]  廖先才. 电动汽车碳纤维复合材料地板结构轻量化设计[D]: [硕士学位论文]. 长春: 吉林大学, 2018.
[18]  杨天云. 汽车座椅轻量化结构设计及成形工艺优化[D]: [硕士学位论文]. 合肥: 合肥工业大学, 2012.
[19]  吉泽升, 张永冰, 姜博, 等. 铝合金挤压铸造的研究进展及其在汽车轻量化上的应用[J]. 铸造工程, 2020, 44(2): 39-45.
[20]  张鹏, 刘颖. 新能源汽车结构优化轻量化关键工艺分析[J]. 汽车实用技术, 2020(7): 203-205.
[21]  赵雨. 汽车轻量化材料及制造工艺分析[J]. 内燃机与配件, 2021(16): 44-45.
[22]  郭玉琴, 朱新峰, 杨艳, 等. 汽车轻量化材料及制造工艺研究现状[J]. 锻压技术, 2015, 40(3): 1-6.
[23]  张长令. 推动新能源汽车大规模应用与发展, 助力中国实现碳中和[J]. 可持续发展经济导刊, 2021(Z2): 28-30.
[24]  Hao, H., Liu, Z., Zhao, F., Li, W. and Hang, W. (2015) Scenario Analysis of Energy Consumption and Green-house Gas Emissions from China's Passenger Vehicles. Energy, 91, 151-159. https://doi.org/10.1016/j.energy.2015.08.054
[25]  何文韬, 郝晓莉, 陈凤. 基于生命周期的新能源汽车碳足迹评价[J]. 东北财经大学学报, 2022(2): 29-41.
[26]  杨文康. “碳中和”背景下乡镇新能源汽车推广的方法和思路[J]. 农机使用与维修, 2021(12): 69-70.
[27]  梁炉, 符钢战. 不同动力系统的插电式混合动力汽车全生命周期能耗和排放的对比分析[J]. 上海汽车, 2016(3): 45-50.
[28]  丁振森, 陈轶嵩, 刘佳慧. 燃料电池汽车与插电式混合动力汽车生命周期对比评价研究[C]//《环境工程》编委会, 工业建筑杂志社有限公司.《 环境工程》2018年全国学术年会论文集(上册). 西安: 长安大学汽车学院, 2018: 274-278.
[29]  刘大鹏, 陈轶嵩. 纯电动汽车与混合动力汽车全生命周期节能减排对比研究[J]. 汽车实用技术, 2018(15): 1-4.
[30]  García, A., Monsalve-Serrano, J., Villalta, D. and Guzmán-Mendoza, M. (2022) Impact of Low Carbon Fuels (LCF) on the Fuel Efficiency and Nox Emissions of a Light-Duty Series Hybrid Commercial Delivery Vehicle. Fuel, 321, Article ID: 124035. https://doi.org/10.1016/j.fuel.2022.124035
[31]  高建平, 赵金宝, 葛坚, 等. 插电式混合动力汽车车载复合电源功率分配策略研究[J]. 图学学报, 2015, 36(4): 603-608.
[32]  潘广纯, 赵红, 闫松, 等. 功率分流式混合动力汽车模型预测控制策略[J]. 内燃机与动力装置, 2019, 36(6): 30-35, 54.
[33]  邱先文. 纯电动汽车技术状况及发展趋势研究[J]. 小型内燃机与车辆技术, 2019, 48(6): 74-79.
[34]  刘斌. 面向碳达峰、碳中和目标的汽车产业实施路线图[J]. 汽车与配件, 2021(22): 36-39.
[35]  何义团, 张鹏博, 邵毅明, 等. 燃油与纯电动汽车流通过程中CO2排放分析[J]. 重庆交通大学学报(自然科学版), 2019, 38(7): 126-130.
[36]  von Brockdorff, P. and Tanti, G. (2017) Carbon Emis-sions of Plug-In Electric Vehicles in Malta: A Policy Review. Case Studies on Transport Policy, 5, 509-517. https://doi.org/10.1016/j.cstp.2017.05.002
[37]  Yu, A., Wei, Y., Chen, W., Peng, N. and Peng, L. (2018) Life Cycle Environmental Impacts and Carbon Emissions: A Case Study of Electric and Gasoline Vehicles in China. Transporta-tion Research Part D: Transport and Environment, 65, 409-420. https://doi.org/10.1016/j.trd.2018.09.009
[38]  梁新成, 刘鹏, 张志冬, 等. 基于燃料电池汽车氢气制备研究[J]. 交通节能与环保, 2022, 18(2): 31-37.
[39]  Hwang, J., Kuo, J., Wu, W., Chang, W., Lin, C. and Wang, S. (2013) Lifecycle Performance Assessment of Fuel Cell/Battery Electric Vehicles. Inter-national Journal of Hydrogen Energy, 38, 3433-3446. https://doi.org/10.1016/j.ijhydene.2012.12.148
[40]  Sinha, P. and Brophy, B. (2021) Life Cycle Assessment of Renewable Hydrogen for Fuel Cell Passenger Vehicles in California. Sustainable Energy Technologies and Assessments, 45, Article ID: 101188. https://doi.org/10.1016/j.seta.2021.101188
[41]  秦朝举, 段俊法. 内燃机燃用氢气的研究进展[J]. 农业装备与车辆工程, 2009(1): 34-36.
[42]  孙柏刚, 包凌志, 罗庆贺. 缸内直喷氢燃料内燃机技术发展及趋势[J]. 汽车安全与节能学报, 2021, 12(3): 265-278.
[43]  Markus, W., 丁锋, Erik, S., 等. 基于氢燃料内燃机的串并联混动系统研究[C]//中国汽车工程学会(China Society of Automotive Engineers). 2020中国汽车工程学会年会论文集(3). 北京: 机械工业出版社, 2020: 199-206.
[44]  段俊法, 刘福水, 孙柏刚. 热EGR氢内燃机的动力性和排放[J]. 内燃机工程, 2016, 37(1): 21-25, 30.
[45]  Arat, H.T. (2019) Alternative Fuelled Hybrid Electric Vehicle (AF-HEV) with Hydro-gen Enriched Internal Combustion Engine. International Journal of Hydrogen Energy, 44, 19005-19016. https://doi.org/10.1016/j.ijhydene.2018.12.219
[46]  孙柏刚, 田华宇, 张冬生, 等. 氢内燃机汽车与传统内燃机汽车的经济性比较研究[J]. 汽车工程学报, 2014, 4(1): 21-27.
[47]  安恩科, 杨霞, 宋尧. 氨作为富氢载体和燃料的应用[J]. 能源技术, 2008, 29(4): 209-211, 239.
[48]  楚育纯, 周梅, 王兆林, 等. 掺氨燃料在四冲程内燃机中的排放特性[J]. 厦门大学学报(自然科学版), 2021, 60(1): 50-57.
[49]  高正平, 涂安琪, 李天新, 等. 面向零碳电力的氨燃烧技术研究进展[J]. 洁净煤技术, 2022, 28(3): 173-184.
[50]  张瀚镕. 氨作为燃料的发展潜力[J]. 化工管理, 2016(9): 143.
[51]  Xin, G., Ji, C., Wang, S., Meng, H., Chang, K. and Yang, J. (2022) Effect of Different Volume Fractions of Ammonia on the Combustion and Emission Characteristics of the Hydrogen-Fueled Engine. In-ternational Journal of Hydrogen Energy, 47, 16297-16308. https://doi.org/10.1016/j.ijhydene.2022.03.103
[52]  Li, T., Zhou, X., Wang, N., Wang, X., Chen, R., Li, S., et al. (2022) A Comparison between Low- and High-Pressure Injection Dual-Fuel Modes of Diesel-Pilot-Ignition Ammonia Combustion Engines. Journal of the Energy Institute, 102, 362-373. https://doi.org/10.1016/j.joei.2022.04.009

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133