Plastic Surgery Update on Epigenetic Reprogramming of Aging (ERA): Mechanisms, Pathways and Strategies toward Cell-Free Aesthetic Rejuvenating Applications
Epigenetics can be defined as a heritable or reversible change in gene expression that is not accompanied by changes in DNA sequences. Epigenetics provides an additional layer of instructions that can affect where and when genes are expressed, modulating the aging process in response to an array of environmental factors such as diet, lifestyle, genetics and disease. Subsequent changes at the gene level are likely to contribute to cell, organ and body senescence affecting the health and well-being of patients. In recent years, regenerative aesthetic medicine has been integrated in the management of aging skin to either replace or restore damaged and dysfunctional skin cells to acquire more youthful appearance and function. In the past decade, small molecule-based pre-clinical studies are investigating partial epigenetic reprogramming intervention strategies for epigenetic rejuvenation to reduce or reverse these infirmities through modifications of epigenetic marks and gene expression patterns.
Cite this paper
Sasaki, G. H. (2025). Plastic Surgery Update on Epigenetic Reprogramming of Aging (ERA): Mechanisms, Pathways and Strategies toward Cell-Free Aesthetic Rejuvenating Applications. Open Access Library Journal, 12, e3617. doi: http://dx.doi.org/10.4236/oalib.1113617.
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2023) Hallmarks of Aging: An Expanding Universe. Cell, 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001
Oberdoeffer, P. and Sinclair, D.A. (2007) The Role of Nuclear Architecture in Genomic Instability and Ageing. Na-ture Reviews Molecular Cell Biology, 8, 692-702.
Zhang, W., Qu, J., Liu, G. and Belmonte, J.C.I. (2020) The Ageing Epigenome and Its Rejuvenation. Nature Reviews Molecular Cell Biology, 21, 137-150. https://doi.org/10.1038/s41580-019-0204-5
Campisi, J. and Vijg, J. (2009) Does Damage to DNA and Other Macromolecules Play a Role in Aging? If So, How? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64, 175-178. https://doi.org/10.1093/gerona/gln065
Yu, M., Hazelton, W.D., Luebeck, G.E. and Grady, W.M. (2020) Epigenetic Aging: More than Just a Clock When It Comes to Cancer. Cancer Research, 80, 367-374. https://doi.org/10.1158/0008-5472.can-19-0924
Wang, K., Liu, H., Hu, Q., et al. (2022) Epigenetic Regulations of Aging: Implications for Interventions of Aging and Disease. Signal Transduction and Targeted Therapy, 7, Article 374.
Dhar, P., Moodithaya, S.S. and Patil, P. (2022) Epigenetic Alterations—The Silent Indicator for Early Aging and Age-Associated Health-Risks. Aging Medicine, 5, 287-293. https://doi.org/10.1002/agm2.12236
Li, A., Koch, Z. and Ideker, T. (2022) Epi-genetic Aging: Biological Age Prediction and Informing a Mechanistic Theory of Ag-ing. Journal of Internal Medicine, 292, 733-744. https://doi.org/10.1111/joim.13533
Birney, E., Stamatoyannopoulos, J.A., Dutta, A., et al. (2007) Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature, 447, 799-816. https://doi.org/10.1038/nature05874
Berdyshev, G.D., Korotaev, G.K., Boiarskikh, G.V., et al. (1967) Nucleotide Composition of DNA and RNA from So-matic Tissues of Humpback and Its Changes during Spawning. Biokhimiia, 32, 988-993.
Teschendorff, A.E., Menon, U., Gen-try-Maharaj, A., Ramus, S.J., Weisenberger, D.J., Shen, H., et al. (2010) Age-Dependent DNA Methylation of Genes That Are Suppressed in Stem Cells Is a Hallmark of Cancer. Genome Research, 20, 440-446. https://doi.org/10.1101/gr.103606.109
Koch, C.M. and Wagner, W. (2011) Epi-genetic-Aging-Signature to Determine Age in Different Tissues. Aging, 3, 1018-1027. https://doi.org/10.18632/aging.100395
Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., et al. (2018) An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging, 10, 573-591. https://doi.org/10.18632/aging.101414
López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The Hallmarks of Aging. Cell, 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
Horvath, S. (2013) DNA Methyla-tion Age of Human Tissues and Cell Types. Genome Biology, 14, Article No. 3156. https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S. and Raj, K. (2018) DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Na-ture Reviews Genetics, 19, 371-384. https://doi.org/10.1038/s41576-018-0004-3
Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., et al. (2019) DNA Methylation Grimage Strongly Pre-dicts Lifespan and Health Span. Aging, 11, 303-327. https://doi.org/10.18632/aging.101684
Belsky, D.W., Caspi, A., Arseneault, L., Baccarelli, A., Corcoran, D.L., Gao, X., et al. (2020) Quantification of the Pace of Bi-ological Aging in Humans through a Blood Test, the Dunedinpoam DNA Methylation Algorithm. eLife, 9, e54870. https://doi.org/10.7554/elife.54870
Nannini, D.R., Joyce, B.T., Zheng, Y., Gao, T., Liu, L., Yoon, G., et al. (2019) Epigenetic Age Acceleration and Metabolic Syndrome in the Coronary Artery Risk Development in Young Adults Study. Clinical Epigenetics, 11, Article No. 160. https://doi.org/10.1186/s13148-019-0767-1
Sillanpää, E., Heikkinen, A., Kankaanpää, A., Paavilainen, A., Kujala, U.M., Tammelin, T.H., et al. (2021) Blood and Skeletal Muscle Ageing Determined by Epigenetic Clocks and Their Associations with Physical Activity and Functioning. Clinical Epigenetics, 13, Article No. 110. https://doi.org/10.1186/s13148-021-01094-6
Ecker, S. and Beck, S. (2019) The Epigenetic Clock: A Molecular Crystal Ball for Human Aging? Aging, 11, 833-835. https://doi.org/10.18632/aging.101712
Barzilai, N., Huffman, D.M., Muzumdar, R.H. and Bartke, A. (2012) The Critical Role of Metabolic Pathways in Aging. Diabe-tes, 61, 1315-1322. https://doi.org/10.2337/db11-1300
Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., et al. (2004) Premature Ageing in Mice Expressing Defective Mitochondrial DNA Polymer-ase. Nature, 429, 417-423. https://doi.org/10.1038/nature02517
Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S., Whiteman, C., et al. (2022) The Rela-tionship between Epigenetic Age and the Hallmarks of Aging in Human Cells. Nature Aging, 2, 484-493. https://doi.org/10.1038/s43587-022-00220-0
Lowe, D., Horvath, S. and Raj, K. (2016) Epigenetic Clock Analyses of Cellular Senescence and Ageing. Oncotarget, 7, 8524-8531. https://doi.org/10.18632/oncotarget.7383
Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C., Morin, G.B., et al. (1998) Extension of Life-Span by Intro-duction of Telomerase into Normal Human Cells. Science, 279, 349-352. https://doi.org/10.1126/science.279.5349.349
Bienkowska, A., Raddatz, G., Söhle, J., Kristof, B., Völzke, H., Gallinat, S., et al. (2024) Development of an Epigenetic Clock to Predict Visual Age Progression of Human Skin. Frontiers in Aging, 4, Article 1258183. https://doi.org/10.3389/fragi.2023.1258183
Boroni, M., Zonari, A., Reis de Oliveira, C., Alkatib, K., Ochoa Cruz, E.A., Brace, L.E., et al. (2020) Highly Accurate Skin-Specific Methylome Analysis Algorithm as a Platform to Screen and Validate Therapeutics for Healthy Aging. Clinical Epigenetics, 12, Article No. 105. https://doi.org/10.1186/s13148-020-00899-1
Jeltsch, A. and Jurkow-ska, R.Z. (2014) New Concepts in DNA Methylation. Trends in Biochemical Sciences, 39, 310-318. https://doi.org/10.1016/j.tibs.2014.05.002
Ushijima, T., Watanabe, N., Okochi, E., Kaneda, A., Sugimura, T. and Miyamoto, K. (2003) Fidelity of the Methylation Pattern and Its Variation in the Genome. Genome Research, 13, 868-874. https://doi.org/10.1101/gr.969603
Luebeck, G.E., Hazelton, W.D., Curtius, K., Maden, S.K., Yu, M., Carter, K.T., et al. (2019) Implications of Epigenetic Drift in Colorectal Neoplasia. Cancer Research, 79, 495-504. https://doi.org/10.1158/0008-5472.can-18-1682
Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022) Aging and Aging-Related Dis-eases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduc-tion and Targeted Therapy, 7, Article No. 391. https://doi.org/10.1038/s41392-022-01251-0
Takahashi, K. and Yamanaka, S. (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibro-blast Cultures by Defined Factors. Cell, 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
Al Abbar, A., Ngai, S.C., Nograles, N., Alhaji, S.Y. and Abdullah, S. (2020) Induced Pluripotent Stem Cells: Reprogram-ming Platforms and Applications in Cell Replacement Therapy. BioResearch Open Ac-cess, 9, 121-136. https://doi.org/10.1089/biores.2019.0046
Park, I., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., et al. (2007) Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors. Nature, 451, 141-146. https://doi.org/10.1038/nature06534
Kim, K., Han, D.W., Kim, J. and Schöler, H.R. (2021) Biological Importance of OCT Transcription Factors in Repro-gramming and Development. Experimental & Molecular Medicine, 53, 1018-1028. https://doi.org/10.1038/s12276-021-00637-4
Radzisheuskaya, A. and Silva, J.C.R. (2014) Do All Roads Lead to Oct4? The Emerging Concepts of Induced Plurip-otency. Trends in Cell Biology, 24, 275-284. https://doi.org/10.1016/j.tcb.2013.11.010
Papapetrou, E.P., Tomishima, M.J., Chambers, S.M., Mica, Y., Reed, E., Menon, J., et al. (2009) Stoichiometric and Tem-poral Requirements of Oct4, Sox2, Klf4, and c-Myc Expression for Efficient Human iPSC Induction and Differentiation. Proceedings of the National Academy of Sciences, 106, 12759-12764. https://doi.org/10.1073/pnas.0904825106
Novak, D., Hüser, L., Elton, J.J., Umansky, V., Altevogt, P. and Utikal, J. (2020) SOX2 in Development and Cancer Biology. Seminars in Cancer Biology, 67, 74-82. https://doi.org/10.1016/j.semcancer.2019.08.007
Malik, V., Glaser, L.V., Zimmer, D., Velychko, S., Weng, M., Holzner, M., et al. (2019) Pluripotency Reprogramming by Competent and Incompetent POU Factors Uncovers Temporal Dependency for Oct4 and Sox2. Nature Communications, 10, Article No. 3477. https://doi.org/10.1038/s41467-019-11054-7
Jerabek, S., Ng, C.K., Wu, G., Arauzo-Bravo, M.J., Kim, K., Esch, D., et al. (2016) Changing POU Dimerization Preferences Converts Oct6 into a Pluripotency Inducer. EMBO Reports, 18, 319-333. https://doi.org/10.15252/embr.201642958
Smith, Z.D., Sindhu, C. and Meissner, A. (2016) Molecular Features of Cellular Reprogramming and Development. Nature Reviews Molecular Cell Biology, 17, 139-154. https://doi.org/10.1038/nrm.2016.6
Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2007) Generation of Induced Pluripotent Stem Cells without Myc from Mouse and Human Fibroblasts. Nature Biotechnology, 26, 101-106. https://doi.org/10.1038/nbt1374
Wang, L., Su, Y., Huang, C., Yin, Y., Chu, A., Knupp, A., et al. (2019) NANOG and LIN28 Dramatically Improve Hu-man Cell Reprogramming by Modulating LIN41 and Canonical WNT Activities. Biol-ogy Open, 8, bio047225. https://doi.org/10.1242/bio.047225
Abad, M., Mosteiro, L., Pantoja, C., Cañamero, M., Rayon, T., Ors, I., et al. (2013) Reprogram-ming in Vivo Produces Teratomas and Ips Cells with Totipotency Features. Nature, 502, 340-345. https://doi.org/10.1038/nature12586
Galow, A. and Peleg, S. (2022) How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells, 11, Article 468. https://doi.org/10.3390/cells11030468
Ji, S., Xiong, M., Chen, H., Liu, Y., Zhou, L., Hong, Y., et al. (2023) Cellular Rejuvenation: Molecular Mechanisms and Potential Therapeutic Interventions for Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 116. https://doi.org/10.1038/s41392-023-01343-5
Puri, D. and Wagner, W. (2023) Epigenetic Rejuvenation by Partial Reprogramming. Bi-oEssays, 45, Article 2200208. https://doi.org/10.1002/bies.202200208
Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., et al. (2016) In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 167, 1719-1733. https://doi.org/10.1016/j.cell.2016.11.052
Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C.D., Hernando-Herraez, I., et al. (2022) Multi-Omic Reju-venation of Human Cells by Maturation Phase Transient Reprogramming. eLife, 11, e71624. https://doi.org/10.7554/elife.71624
Narayan, S., Bryant, G., Shah, S., Berrozpe, G. and Ptashne, M. (2017) OCT4 and SOX2 Work as Transcriptional Acti-vators in Reprogramming Human Fibroblasts. Cell Reports, 20, 1585-1596. https://doi.org/10.1016/j.celrep.2017.07.071
Lee, D., Shin, J., Tonge, P.D., Puri, M.C., Lee, S., Park, H., et al. (2014) An Epigenomic Roadmap to Induced Pluripotency Reveals DNA Methylation as a Reprogramming Modulator. Nature Communications, 5, Article No. 5619. https://doi.org/10.1038/ncomms6619
Singh, P.B. and Zacouto, F. (2010) Nuclear Reprogramming and Epigenetic Rejuvenation. Journal of Biosciences, 35, 315-319. https://doi.org/10.1007/s12038-010-0034-2
Cipriano, A., Moqri, M., Maybury-Lewis, S.Y., Rogers-Hammond, R., de Jong, T.A., Parker, A., et al. (2023) Mechanisms, Pathways and Strategies for Rejuvenation through Epigenetic Repro-gramming. Nature Aging, 4, 14-26. https://doi.org/10.1038/s43587-023-00539-2
Rodríguez-Matellán, A., Alcazar, N., Hernández, F., Serrano, M. and ávila, J. (2020) In Vivo Reprogramming Amelio-rates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 15, 1056-1066. https://doi.org/10.1016/j.stemcr.2020.09.010
Alle, Q., Le Borgne, E., Bensadoun, P., Lemey, C., Béchir, N., Gabanou, M., et al. (2022) A Single Short Reprogramming Early in Life Initiates and Propagates an Epigenetically Related Mechanism Improving Fitness and Promoting an Increased Healthy Lifespan. Aging Cell, 21, e13714. https://doi.org/10.1111/acel.13714
Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., et al. (2020) Reprogramming to Recover Youthful Epigenetic Information and Restore Vision. Nature, 588, 124-129. https://doi.org/10.1038/s41586-020-2975-4
Chondronasiou, D., Gill, D., Mosteiro, L., Urdinguio, R.G., Berenguer-Llergo, A., Aguilera, M., et al. (2022) Mul-ti-Omic Rejuvenation of Naturally Aged Tissues by a Single Cycle of Transient Repro-gramming. Aging Cell, 21, e13578. https://doi.org/10.1111/acel.13578
Browder, K.C., Reddy, P., Yamamoto, M., Haghani, A., Guillen, I.G., Sahu, S., et al. (2022) In Vivo Partial Reprogramming Alters Age-Associated Molecular Changes during Physi-ological Aging in Mice. Nature Aging, 2, 243-253. https://doi.org/10.1038/s43587-022-00183-2
Marión, R.M., López de Silanes, I., Mosteiro, L., Gamache, B., Abad, M., Guerra, C., et al. (2017) Common Telomere Changes during in Vivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 8, 460-475. https://doi.org/10.1016/j.stemcr.2017.01.001
Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Aït-Hamou, N., et al. (2011) Rejuvenating Senescent and Centenarian Human Cells by Reprogramming through the Pluripotent State. Genes & Development, 25, 2248-2253. https://doi.org/10.1101/gad.173922.111
Paine, P.T., Nguyen, A. and Ocampo, A. (2023) Partial Cellular Reprogramming: A Deep Dive into an Emerging Rejuvenation Technology. Aging Cell, 23, e14039. https://doi.org/10.1111/acel.14039
Kim, Y., Jeong, J. and Choi, D. (2020) Small-Molecule-Mediated Reprogramming: A Silver Lining for Regenerative Medicine. Experimental & Molecular Medicine, 52, 213-226. https://doi.org/10.1038/s12276-020-0383-3
Xiao, F., Wang, H. and Kong, Q. (2019) Dynamic DNA Methylation during Aging: A “Prophet” of Age-Related Out-comes. Frontiers in Genetics, 10, Article 107. https://doi.org/10.3389/fgene.2019.00107
Xu, H., Li, S. and Liu, Y. (2021) Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Frontiers in Cell and Developmental Biology, 9, Article 699374. https://doi.org/10.3389/fcell.2021.699374
Giri, A.K. and Aittokallio, T. (2019) DNMT Inhibitors Increase Methylation in the Cancer Genome. Frontiers in Pharma-cology, 10, Article 385. https://doi.org/10.3389/fphar.2019.00385
Kornicka, K., Marycz, K., Marędziak, M., Tomaszewski, K.A. and Nicpoń, J. (2016) The Effects of the dna Methyltranfserases Inhibitor 5-Azacitidine on Ageing, Oxidative Stress and DNA Methylation of Adipose Derived Stem Cells. Journal of Cellular and Molecular Medicine, 21, 387-401. https://doi.org/10.1111/jcmm.12972
Derissen, E.J.B., Beijnen, J.H. and Schellens, J.H.M. (2013) Concise Drug Review: Azacitidine and De-citabine. The Oncologist, 18, 619-624. https://doi.org/10.1634/theoncologist.2012-0465
Conboy, I.M., Conboy, M.J., Wa-gers, A.J., Girma, E.R., Weissman, I.L. and Rando, T.A. (2005) Rejuvenation of Aged Progenitor Cells by Exposure to a Young Systemic Environment. Nature, 433, 760-764. https://doi.org/10.1038/nature03260
Martel, J., Ojcius, D.M., Wu, C., Peng, H., Voisin, L., Perfettini, J., et al. (2020) Emerging Use of Senolytics and Senomorphics against Aging and Chronic Diseases. Medicinal Research Reviews, 40, 2114-2131. https://doi.org/10.1002/med.21702
Horvath, S., Zhang, Y., Langfelder, P., Kahn, R.S., Boks, M.P., van Eijk, K., et al. (2012) Aging Effects on DNA Methylation Modules in Human Brain and Blood Tissue. Genome Biology, 13, R97. https://doi.org/10.1186/gb-2012-13-10-r97
Yücel, A.D. and Gladyshev, V.N. (2024) The Long and Winding Road of Reprogramming-Induced Rejuvenation. Nature Communications, 15, Article No. 1941. https://doi.org/10.1038/s41467-024-46020-5
Menon, S., Monteleon, C., Rhodes, A.S.J., Sebastiano, V. and Hsia, E. (2024) Transient Epigenetic Reprogramming: The Future of Skin Rejuvenation. Dermatologic Surgery, 50, S145-S148. https://doi.org/10.1097/dss.0000000000004433