全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Plastic Surgery Update on Epigenetic Reprogramming of Aging (ERA): Mechanisms, Pathways and Strategies toward Cell-Free Aesthetic Rejuvenating Applications

DOI: 10.4236/oalib.1113617, PP. 1-16

Subject Areas: Molecular Biology

Keywords: Partial Epigenetic Reprogramming, Skin Rejuvenation, Aging Skin

Full-Text   Cite this paper   Add to My Lib

Abstract

Epigenetics can be defined as a heritable or reversible change in gene expression that is not accompanied by changes in DNA sequences. Epigenetics provides an additional layer of instructions that can affect where and when genes are expressed, modulating the aging process in response to an array of environmental factors such as diet, lifestyle, genetics and disease. Subsequent changes at the gene level are likely to contribute to cell, organ and body senescence affecting the health and well-being of patients. In recent years, regenerative aesthetic medicine has been integrated in the management of aging skin to either replace or restore damaged and dysfunctional skin cells to acquire more youthful appearance and function. In the past decade, small molecule-based pre-clinical studies are investigating partial epigenetic reprogramming intervention strategies for epigenetic rejuvenation to reduce or reverse these infirmities through modifications of epigenetic marks and gene expression patterns.

Cite this paper

Sasaki, G. H. (2025). Plastic Surgery Update on Epigenetic Reprogramming of Aging (ERA): Mechanisms, Pathways and Strategies toward Cell-Free Aesthetic Rejuvenating Applications. Open Access Library Journal, 12, e3617. doi: http://dx.doi.org/10.4236/oalib.1113617.

References

[1]  López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2023) Hallmarks of Aging: An Expanding Universe. Cell, 186, 243-278. https://doi.org/10.1016/j.cell.2022.11.001
[2]  Booth, L.N. and Brunet, A. (2016) The Aging Epigenome. Molecular Cell, 62, 728-744.
[3]  Oberdoeffer, P. and Sinclair, D.A. (2007) The Role of Nuclear Architecture in Genomic Instability and Ageing. Na-ture Reviews Molecular Cell Biology, 8, 692-702.
[4]  Zhang, W., Qu, J., Liu, G. and Belmonte, J.C.I. (2020) The Ageing Epigenome and Its Rejuvenation. Nature Reviews Molecular Cell Biology, 21, 137-150. https://doi.org/10.1038/s41580-019-0204-5
[5]  Campisi, J. and Vijg, J. (2009) Does Damage to DNA and Other Macromolecules Play a Role in Aging? If So, How? The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 64, 175-178. https://doi.org/10.1093/gerona/gln065
[6]  Alle, Q., Borgne, E.L., Milhavet, O., et al. (2021) Reprogramming: Emerging Strategies to Rejuvenate Aging Cells and Tissues. International Journal of Molecular Sciences, 22, Article 3990.
[7]  Yu, M., Hazelton, W.D., Luebeck, G.E. and Grady, W.M. (2020) Epigenetic Aging: More than Just a Clock When It Comes to Cancer. Cancer Research, 80, 367-374. https://doi.org/10.1158/0008-5472.can-19-0924
[8]  Wang, K., Liu, H., Hu, Q., et al. (2022) Epigenetic Regulations of Aging: Implications for Interventions of Aging and Disease. Signal Transduction and Targeted Therapy, 7, Article 374.
[9]  Dhar, P., Moodithaya, S.S. and Patil, P. (2022) Epigenetic Alterations—The Silent Indicator for Early Aging and Age-Associated Health-Risks. Aging Medicine, 5, 287-293. https://doi.org/10.1002/agm2.12236
[10]  Li, A., Koch, Z. and Ideker, T. (2022) Epi-genetic Aging: Biological Age Prediction and Informing a Mechanistic Theory of Ag-ing. Journal of Internal Medicine, 292, 733-744. https://doi.org/10.1111/joim.13533
[11]  Cheutin, T., McNairn, A.J., Jenuwein, T., Gilbert, D.M., Singh, P.B. and Misteli, T. (2003) Maintenance of Stable Heterochro-matin Domains by Dynamic HP1 Binding. Science, 299, 721-725. https://doi.org/10.1126/science.1078572
[12]  Obe, G., Pfeiffer, P., Savage, J.R.K., Johannes, C., Goedecke, W., Jeppesen, P., et al. (2002) Chromosomal Aberrations: Formation, Identification and Distribution. Mutation Research/Fundamental and Mo-lecular Mechanisms of Mutagenesis, 504, 17-36. https://doi.org/10.1016/s0027-5107(02)00076-3
[13]  Grewal, S.I.S. and Jia, S. (2007) Heterochromatin Revisited. Nature Reviews Genetics, 8, 35-46. https://doi.org/10.1038/nrg2008
[14]  Jenuwein, T. and Allis, C.D. (2001) Translating the Histone Code. Science, 293, 1074-1080. https://doi.org/10.1126/science.1063127
[15]  Birney, E., Stamatoyannopoulos, J.A., Dutta, A., et al. (2007) Identification and Analysis of Functional Elements in 1% of the Human Genome by the ENCODE Pilot Project. Nature, 447, 799-816. https://doi.org/10.1038/nature05874
[16]  Kharchenko, P.V., Alekseyenko, A.A., Schwartz, Y.B., Minoda, A., Riddle, N.C., Ernst, J., et al. (2010) Comprehensive Analysis of the Chromatin Landscape in Drosophila Melanogaster. Nature, 471, 480-485. https://doi.org/10.1038/nature09725
[17]  Jones, M.J., Goodman, S.J. and Kobor, M.S. (2015) DNA Methylation and Healthy Human Aging. Aging Cell, 14, 924-932. https://doi.org/10.1111/acel.12349
[18]  Berdyshev, G.D., Korotaev, G.K., Boiarskikh, G.V., et al. (1967) Nucleotide Composition of DNA and RNA from So-matic Tissues of Humpback and Its Changes during Spawning. Biokhimiia, 32, 988-993.
[19]  Rakyan, V.K., Down, T.A., Maslau, S., Andrew, T., Yang, T., Beyan, H., et al. (2010) Human Aging-Associated DNA Hypermethylation Occurs Preferen-tially at Bivalent Chromatin Domains. Genome Research, 20, 434-439. https://doi.org/10.1101/gr.103101.109
[20]  Teschendorff, A.E., Menon, U., Gen-try-Maharaj, A., Ramus, S.J., Weisenberger, D.J., Shen, H., et al. (2010) Age-Dependent DNA Methylation of Genes That Are Suppressed in Stem Cells Is a Hallmark of Cancer. Genome Research, 20, 440-446. https://doi.org/10.1101/gr.103606.109
[21]  Koch, C.M. and Wagner, W. (2011) Epi-genetic-Aging-Signature to Determine Age in Different Tissues. Aging, 3, 1018-1027. https://doi.org/10.18632/aging.100395
[22]  Jylhävä, J., Pedersen, N.L. and Hägg, S. (2017) Biological Age Predictors. eBioMedicine, 21, 29-36. https://doi.org/10.1016/j.ebiom.2017.03.046
[23]  Levine, M.E., Lu, A.T., Quach, A., Chen, B.H., Assimes, T.L., Bandinelli, S., et al. (2018) An Epigenetic Biomarker of Aging for Lifespan and Healthspan. Aging, 10, 573-591. https://doi.org/10.18632/aging.101414
[24]  Jin, K. (2010) Modern Biological Theo-ries of Aging. Aging and Disease, 1, L72-L74.
[25]  López-Otín, C., Blasco, M.A., Partridge, L., Serrano, M. and Kroemer, G. (2013) The Hallmarks of Aging. Cell, 153, 1194-1217. https://doi.org/10.1016/j.cell.2013.05.039
[26]  Bocklandt, S., Lin, W., Sehl, M.E., Sánchez, F.J., Sinsheimer, J.S., Horvath, S., et al. (2011) Epigenetic Pre-dictor of Age. PLOS ONE, 6, e14821. https://doi.org/10.1371/journal.pone.0014821
[27]  Hannum, G., Guinney, J., Zhao, L., Zhang, L., Hughes, G., Sadda, S., et al. (2013) Genome-Wide Methylation Profiles Reveal Quantitative Views of Human Aging Rates. Molecular Cell, 49, 359-367. https://doi.org/10.1016/j.molcel.2012.10.016
[28]  Horvath, S. (2013) DNA Methyla-tion Age of Human Tissues and Cell Types. Genome Biology, 14, Article No. 3156. https://doi.org/10.1186/gb-2013-14-10-r115
[29]  Horvath, S. and Raj, K. (2018) DNA Methylation-Based Biomarkers and the Epigenetic Clock Theory of Ageing. Na-ture Reviews Genetics, 19, 371-384. https://doi.org/10.1038/s41576-018-0004-3
[30]  Lu, A.T., Quach, A., Wilson, J.G., Reiner, A.P., Aviv, A., Raj, K., et al. (2019) DNA Methylation Grimage Strongly Pre-dicts Lifespan and Health Span. Aging, 11, 303-327. https://doi.org/10.18632/aging.101684
[31]  Belsky, D.W., Caspi, A., Arseneault, L., Baccarelli, A., Corcoran, D.L., Gao, X., et al. (2020) Quantification of the Pace of Bi-ological Aging in Humans through a Blood Test, the Dunedinpoam DNA Methylation Algorithm. eLife, 9, e54870. https://doi.org/10.7554/elife.54870
[32]  Gensous, N., Bacalini, M.G., Pirazzini, C., Marasco, E., Giuliani, C., Ravaioli, F., et al. (2017) The Epigenetic Landscape of Age-Related Diseases: The Geroscience Perspective. Bioger-ontology, 18, 549-559. https://doi.org/10.1007/s10522-017-9695-7
[33]  Nannini, D.R., Joyce, B.T., Zheng, Y., Gao, T., Liu, L., Yoon, G., et al. (2019) Epigenetic Age Acceleration and Metabolic Syndrome in the Coronary Artery Risk Development in Young Adults Study. Clinical Epigenetics, 11, Article No. 160. https://doi.org/10.1186/s13148-019-0767-1
[34]  Sillanpää, E., Heikkinen, A., Kankaanpää, A., Paavilainen, A., Kujala, U.M., Tammelin, T.H., et al. (2021) Blood and Skeletal Muscle Ageing Determined by Epigenetic Clocks and Their Associations with Physical Activity and Functioning. Clinical Epigenetics, 13, Article No. 110. https://doi.org/10.1186/s13148-021-01094-6
[35]  Ecker, S. and Beck, S. (2019) The Epigenetic Clock: A Molecular Crystal Ball for Human Aging? Aging, 11, 833-835. https://doi.org/10.18632/aging.101712
[36]  Barzilai, N., Huffman, D.M., Muzumdar, R.H. and Bartke, A. (2012) The Critical Role of Metabolic Pathways in Aging. Diabe-tes, 61, 1315-1322. https://doi.org/10.2337/db11-1300
[37]  Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J.N., Rovio, A.T., Bruder, C.E., et al. (2004) Premature Ageing in Mice Expressing Defective Mitochondrial DNA Polymer-ase. Nature, 429, 417-423. https://doi.org/10.1038/nature02517
[38]  Kabacik, S., Lowe, D., Fransen, L., Leonard, M., Ang, S., Whiteman, C., et al. (2022) The Rela-tionship between Epigenetic Age and the Hallmarks of Aging in Human Cells. Nature Aging, 2, 484-493. https://doi.org/10.1038/s43587-022-00220-0
[39]  Lowe, D., Horvath, S. and Raj, K. (2016) Epigenetic Clock Analyses of Cellular Senescence and Ageing. Oncotarget, 7, 8524-8531. https://doi.org/10.18632/oncotarget.7383
[40]  Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C., Morin, G.B., et al. (1998) Extension of Life-Span by Intro-duction of Telomerase into Normal Human Cells. Science, 279, 349-352. https://doi.org/10.1126/science.279.5349.349
[41]  Lowe, D.J., Herzog, M., Mosler, T., Cohen, H., Felton, S., Beli, P., et al. (2020) Chronic Irradiation of Human Cells Reduces Histone Levels and Deregulates Gene Expression. Scientific Reports, 10, Arti-cle No. 2200. https://doi.org/10.1038/s41598-020-59163-4
[42]  Bienkowska, A., Raddatz, G., Söhle, J., Kristof, B., Völzke, H., Gallinat, S., et al. (2024) Development of an Epigenetic Clock to Predict Visual Age Progression of Human Skin. Frontiers in Aging, 4, Article 1258183. https://doi.org/10.3389/fragi.2023.1258183
[43]  Boroni, M., Zonari, A., Reis de Oliveira, C., Alkatib, K., Ochoa Cruz, E.A., Brace, L.E., et al. (2020) Highly Accurate Skin-Specific Methylome Analysis Algorithm as a Platform to Screen and Validate Therapeutics for Healthy Aging. Clinical Epigenetics, 12, Article No. 105. https://doi.org/10.1186/s13148-020-00899-1
[44]  Jeltsch, A. and Jurkow-ska, R.Z. (2014) New Concepts in DNA Methylation. Trends in Biochemical Sciences, 39, 310-318. https://doi.org/10.1016/j.tibs.2014.05.002
[45]  Ushijima, T., Watanabe, N., Okochi, E., Kaneda, A., Sugimura, T. and Miyamoto, K. (2003) Fidelity of the Methylation Pattern and Its Variation in the Genome. Genome Research, 13, 868-874. https://doi.org/10.1101/gr.969603
[46]  Luebeck, G.E., Hazelton, W.D., Curtius, K., Maden, S.K., Yu, M., Carter, K.T., et al. (2019) Implications of Epigenetic Drift in Colorectal Neoplasia. Cancer Research, 79, 495-504. https://doi.org/10.1158/0008-5472.can-18-1682
[47]  Fakouri, N.B., Hou, Y., De-marest, T.G., Christiansen, L.S., Okur, M.N., Mohanty, J.G., et al. (2018) Toward Understanding Genomic Instability, Mitochondrial Dysfunction and Aging. The FEBS Journal, 286, 1058-1073. https://doi.org/10.1111/febs.14663
[48]  Guo, J., Huang, X., Dou, L., Yan, M., Shen, T., Tang, W., et al. (2022) Aging and Aging-Related Dis-eases: From Molecular Mechanisms to Interventions and Treatments. Signal Transduc-tion and Targeted Therapy, 7, Article No. 391. https://doi.org/10.1038/s41392-022-01251-0
[49]  Takahashi, K. and Yamanaka, S. (2006) Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibro-blast Cultures by Defined Factors. Cell, 126, 663-676. https://doi.org/10.1016/j.cell.2006.07.024
[50]  Al Abbar, A., Ngai, S.C., Nograles, N., Alhaji, S.Y. and Abdullah, S. (2020) Induced Pluripotent Stem Cells: Reprogram-ming Platforms and Applications in Cell Replacement Therapy. BioResearch Open Ac-cess, 9, 121-136. https://doi.org/10.1089/biores.2019.0046
[51]  Park, I., Zhao, R., West, J.A., Yabuuchi, A., Huo, H., Ince, T.A., et al. (2007) Reprogramming of Human Somatic Cells to Pluripotency with Defined Factors. Nature, 451, 141-146. https://doi.org/10.1038/nature06534
[52]  Yu, J., Vodyanik, M.A., Smuga-Otto, K., Antosiewicz-Bourget, J., Frane, J.L., Tian, S., et al. (2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science, 318, 1917-1920. https://doi.org/10.1126/science.1151526
[53]  Kim, K., Han, D.W., Kim, J. and Schöler, H.R. (2021) Biological Importance of OCT Transcription Factors in Repro-gramming and Development. Experimental & Molecular Medicine, 53, 1018-1028. https://doi.org/10.1038/s12276-021-00637-4
[54]  Radzisheuskaya, A. and Silva, J.C.R. (2014) Do All Roads Lead to Oct4? The Emerging Concepts of Induced Plurip-otency. Trends in Cell Biology, 24, 275-284. https://doi.org/10.1016/j.tcb.2013.11.010
[55]  Papapetrou, E.P., Tomishima, M.J., Chambers, S.M., Mica, Y., Reed, E., Menon, J., et al. (2009) Stoichiometric and Tem-poral Requirements of Oct4, Sox2, Klf4, and c-Myc Expression for Efficient Human iPSC Induction and Differentiation. Proceedings of the National Academy of Sciences, 106, 12759-12764. https://doi.org/10.1073/pnas.0904825106
[56]  Novak, D., Hüser, L., Elton, J.J., Umansky, V., Altevogt, P. and Utikal, J. (2020) SOX2 in Development and Cancer Biology. Seminars in Cancer Biology, 67, 74-82. https://doi.org/10.1016/j.semcancer.2019.08.007
[57]  Chen, J., Zhang, Z., Li, L., Chen, B., Revyakin, A., Hajj, B., et al. (2014) Single-Molecule Dynamics of Enhance-osome Assembly in Embryonic Stem Cells. Cell, 156, 1274-1285. https://doi.org/10.1016/j.cell.2014.01.062
[58]  Malik, V., Glaser, L.V., Zimmer, D., Velychko, S., Weng, M., Holzner, M., et al. (2019) Pluripotency Reprogramming by Competent and Incompetent POU Factors Uncovers Temporal Dependency for Oct4 and Sox2. Nature Communications, 10, Article No. 3477. https://doi.org/10.1038/s41467-019-11054-7
[59]  Jerabek, S., Ng, C.K., Wu, G., Arauzo-Bravo, M.J., Kim, K., Esch, D., et al. (2016) Changing POU Dimerization Preferences Converts Oct6 into a Pluripotency Inducer. EMBO Reports, 18, 319-333. https://doi.org/10.15252/embr.201642958
[60]  Smith, Z.D., Sindhu, C. and Meissner, A. (2016) Molecular Features of Cellular Reprogramming and Development. Nature Reviews Molecular Cell Biology, 17, 139-154. https://doi.org/10.1038/nrm.2016.6
[61]  Nakagawa, M., Koyanagi, M., Tanabe, K., Takahashi, K., Ichisaka, T., Aoi, T., et al. (2007) Generation of Induced Pluripotent Stem Cells without Myc from Mouse and Human Fibroblasts. Nature Biotechnology, 26, 101-106. https://doi.org/10.1038/nbt1374
[62]  Wang, L., Su, Y., Huang, C., Yin, Y., Chu, A., Knupp, A., et al. (2019) NANOG and LIN28 Dramatically Improve Hu-man Cell Reprogramming by Modulating LIN41 and Canonical WNT Activities. Biol-ogy Open, 8, bio047225. https://doi.org/10.1242/bio.047225
[63]  Abad, M., Mosteiro, L., Pantoja, C., Cañamero, M., Rayon, T., Ors, I., et al. (2013) Reprogram-ming in Vivo Produces Teratomas and Ips Cells with Totipotency Features. Nature, 502, 340-345. https://doi.org/10.1038/nature12586
[64]  Galow, A. and Peleg, S. (2022) How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells, 11, Article 468. https://doi.org/10.3390/cells11030468
[65]  Ji, S., Xiong, M., Chen, H., Liu, Y., Zhou, L., Hong, Y., et al. (2023) Cellular Rejuvenation: Molecular Mechanisms and Potential Therapeutic Interventions for Diseases. Signal Transduction and Targeted Therapy, 8, Article No. 116. https://doi.org/10.1038/s41392-023-01343-5
[66]  Puri, D. and Wagner, W. (2023) Epigenetic Rejuvenation by Partial Reprogramming. Bi-oEssays, 45, Article 2200208. https://doi.org/10.1002/bies.202200208
[67]  Singh, P.B. and Zhakupova, A. (2022) Age Programming: Cell Rejuvenation by Partial Re-programming. Development, 149, dev200755.
[68]  Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., et al. (2016) In Vivo Amelioration of Age-Associated Hallmarks by Partial Reprogramming. Cell, 167, 1719-1733. https://doi.org/10.1016/j.cell.2016.11.052
[69]  Gill, D., Parry, A., Santos, F., Okkenhaug, H., Todd, C.D., Hernando-Herraez, I., et al. (2022) Multi-Omic Reju-venation of Human Cells by Maturation Phase Transient Reprogramming. eLife, 11, e71624. https://doi.org/10.7554/elife.71624
[70]  Guo, L., Karoubi, G., Duchesneau, P., Shutova, M.V., Sung, H., Tonge, P., et al. (2017) Generation of Induced Progeni-tor-Like Cells from Mature Epithelial Cells Using Interrupted Reprogramming. Stem Cell Reports, 9, 1780-1795. https://doi.org/10.1016/j.stemcr.2017.10.022
[71]  Hishida, T., Yamamoto, M., Hishida-Nozaki, Y., Shao, C., Huang, L., Wang, C., et al. (2022) In Vivo Partial Cellu-lar Reprogramming Enhances Liver Plasticity and Regeneration. Cell Reports, 39, Arti-cle 110730. https://doi.org/10.1016/j.celrep.2022.110730
[72]  Chronis, C., Fiziev, P., Papp, B., Butz, S., Bonora, G., Sabri, S., et al. (2017) Cooperative Binding of Tran-scription Factors Orchestrates Reprogramming. Cell, 168, 442-459. https://doi.org/10.1016/j.cell.2016.12.016
[73]  Li, D., Liu, J., Yang, X., Zhou, C., Guo, J., Wu, C., et al. (2017) Chromatin Accessibility Dynamics during IPSC Repro-gramming. Cell Stem Cell, 21, 819-833. https://doi.org/10.1016/j.stem.2017.10.012
[74]  Knaupp, A.S., Buckberry, S., Pflue-ger, J., Lim, S.M., Ford, E., Larcombe, M.R., et al. (2017) Transient and Permanent Reconfiguration of Chromatin and Transcription Factor Occupancy Drive Reprogram-ming. Cell Stem Cell, 21, 834-845. https://doi.org/10.1016/j.stem.2017.11.007
[75]  Narayan, S., Bryant, G., Shah, S., Berrozpe, G. and Ptashne, M. (2017) OCT4 and SOX2 Work as Transcriptional Acti-vators in Reprogramming Human Fibroblasts. Cell Reports, 20, 1585-1596. https://doi.org/10.1016/j.celrep.2017.07.071
[76]  Polo, J.M., Anderssen, E., Walsh, R.M., Schwarz, B.A., Nefzger, C.M., Lim, S.M., et al. (2012) A Molecular Roadmap of Reprogramming Somatic Cells into Ips Cells. Cell, 151, 1617-1632. https://doi.org/10.1016/j.cell.2012.11.039
[77]  Schwarz, B.A., Cetinbas, M., Clement, K., Walsh, R.M., Cheloufi, S., Gu, H., et al. (2018) Prospective Isolation of Poised IPSC Intermediates Reveals Principles of Cellular Reprogramming. Cell Stem Cell, 23, 289-305. https://doi.org/10.1016/j.stem.2018.06.013
[78]  Lee, D., Shin, J., Tonge, P.D., Puri, M.C., Lee, S., Park, H., et al. (2014) An Epigenomic Roadmap to Induced Pluripotency Reveals DNA Methylation as a Reprogramming Modulator. Nature Communications, 5, Article No. 5619. https://doi.org/10.1038/ncomms6619
[79]  Papp, B. and Plath, K. (2013) Epigenetics of Reprogramming to Induced Pluripotency. Cell, 152, 1324-1343. https://doi.org/10.1016/j.cell.2013.02.043
[80]  Singh, P.B. and Zacouto, F. (2010) Nuclear Reprogramming and Epigenetic Rejuvenation. Journal of Biosciences, 35, 315-319. https://doi.org/10.1007/s12038-010-0034-2
[81]  Manukyan, M. and Singh, P.B. (2012) Epigenetic Rejuvenation. Genes to Cells, 17, 337-343. https://doi.org/10.1111/j.1365-2443.2012.01595.x
[82]  Cipriano, A., Moqri, M., Maybury-Lewis, S.Y., Rogers-Hammond, R., de Jong, T.A., Parker, A., et al. (2023) Mechanisms, Pathways and Strategies for Rejuvenation through Epigenetic Repro-gramming. Nature Aging, 4, 14-26. https://doi.org/10.1038/s43587-023-00539-2
[83]  Rodríguez-Matellán, A., Alcazar, N., Hernández, F., Serrano, M. and ávila, J. (2020) In Vivo Reprogramming Amelio-rates Aging Features in Dentate Gyrus Cells and Improves Memory in Mice. Stem Cell Reports, 15, 1056-1066. https://doi.org/10.1016/j.stemcr.2020.09.010
[84]  Alle, Q., Le Borgne, E., Bensadoun, P., Lemey, C., Béchir, N., Gabanou, M., et al. (2022) A Single Short Reprogramming Early in Life Initiates and Propagates an Epigenetically Related Mechanism Improving Fitness and Promoting an Increased Healthy Lifespan. Aging Cell, 21, e13714. https://doi.org/10.1111/acel.13714
[85]  Lu, Y., Brommer, B., Tian, X., Krishnan, A., Meer, M., Wang, C., et al. (2020) Reprogramming to Recover Youthful Epigenetic Information and Restore Vision. Nature, 588, 124-129. https://doi.org/10.1038/s41586-020-2975-4
[86]  Chondronasiou, D., Gill, D., Mosteiro, L., Urdinguio, R.G., Berenguer-Llergo, A., Aguilera, M., et al. (2022) Mul-ti-Omic Rejuvenation of Naturally Aged Tissues by a Single Cycle of Transient Repro-gramming. Aging Cell, 21, e13578. https://doi.org/10.1111/acel.13578
[87]  Browder, K.C., Reddy, P., Yamamoto, M., Haghani, A., Guillen, I.G., Sahu, S., et al. (2022) In Vivo Partial Reprogramming Alters Age-Associated Molecular Changes during Physi-ological Aging in Mice. Nature Aging, 2, 243-253. https://doi.org/10.1038/s43587-022-00183-2
[88]  Roux, A.E., Zhang, C., Paw, J., Zavala-Solorio, J., Malahias, E., Vijay, T., et al. (2022) Diverse Partial Reprogramming Strategies Restore Youthful Gene Expression and Transiently Suppress Cell Identity. Cell Systems, 13, 574-587. https://doi.org/10.1016/j.cels.2022.05.002
[89]  Marión, R.M., López de Silanes, I., Mosteiro, L., Gamache, B., Abad, M., Guerra, C., et al. (2017) Common Telomere Changes during in Vivo Reprogramming and Early Stages of Tumorigenesis. Stem Cell Reports, 8, 460-475. https://doi.org/10.1016/j.stemcr.2017.01.001
[90]  Lapasset, L., Milhavet, O., Prieur, A., Besnard, E., Babled, A., Aït-Hamou, N., et al. (2011) Rejuvenating Senescent and Centenarian Human Cells by Reprogramming through the Pluripotent State. Genes & Development, 25, 2248-2253. https://doi.org/10.1101/gad.173922.111
[91]  Suhr, S.T., Chang, E.A., Rodriguez, R.M., Wang, K., Ross, P.J., Beyhan, Z., et al. (2009) Telomere Dynamics in Human Cells Reprogrammed to Pluripotency. PLOS ONE, 4, e8124. https://doi.org/10.1371/journal.pone.0008124
[92]  Sarkar, T.J., Quarta, M., Mukherjee, S., Colville, A., Paine, P., Doan, L., et al. (2020) Transient Non-Integrative Expression of Nuclear Reprogramming Factors Promotes Multifaceted Amelioration of Aging in Human Cells. Nature Communications, 11, Article No. 1545. https://doi.org/10.1038/s41467-020-15174-3
[93]  Paine, P.T., Nguyen, A. and Ocampo, A. (2023) Partial Cellular Reprogramming: A Deep Dive into an Emerging Rejuvenation Technology. Aging Cell, 23, e14039. https://doi.org/10.1111/acel.14039
[94]  Kim, Y., Jeong, J. and Choi, D. (2020) Small-Molecule-Mediated Reprogramming: A Silver Lining for Regenerative Medicine. Experimental & Molecular Medicine, 52, 213-226. https://doi.org/10.1038/s12276-020-0383-3
[95]  Megino-Luque, C., Moiola, C.P., Molins-Escuder, C., López-Gil, C., Gil-Moreno, A., Matias-Guiu, X., et al. (2020) Small-Molecule Inhibitors (SMIs) as an Effective Therapeutic Strategy for Endometrial Cancer. Cancers, 12, Article 2751. https://doi.org/10.3390/cancers12102751
[96]  Xiao, F., Wang, H. and Kong, Q. (2019) Dynamic DNA Methylation during Aging: A “Prophet” of Age-Related Out-comes. Frontiers in Genetics, 10, Article 107. https://doi.org/10.3389/fgene.2019.00107
[97]  Xu, H., Li, S. and Liu, Y. (2021) Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Frontiers in Cell and Developmental Biology, 9, Article 699374. https://doi.org/10.3389/fcell.2021.699374
[98]  Giri, A.K. and Aittokallio, T. (2019) DNMT Inhibitors Increase Methylation in the Cancer Genome. Frontiers in Pharma-cology, 10, Article 385. https://doi.org/10.3389/fphar.2019.00385
[99]  Kornicka, K., Marycz, K., Marędziak, M., Tomaszewski, K.A. and Nicpoń, J. (2016) The Effects of the dna Methyltranfserases Inhibitor 5-Azacitidine on Ageing, Oxidative Stress and DNA Methylation of Adipose Derived Stem Cells. Journal of Cellular and Molecular Medicine, 21, 387-401. https://doi.org/10.1111/jcmm.12972
[100]  Derissen, E.J.B., Beijnen, J.H. and Schellens, J.H.M. (2013) Concise Drug Review: Azacitidine and De-citabine. The Oncologist, 18, 619-624. https://doi.org/10.1634/theoncologist.2012-0465
[101]  Cole, J.J., Robertson, N.A., Rather, M.I., Thomson, J.P., McBryan, T., Sproul, D., et al. (2017) Diverse Interven-tions That Extend Mouse Lifespan Suppress Shared Age-Associated Epigenetic Changes at Critical Gene Regulatory Regions. Genome Biology, 18, Article No. 58. https://doi.org/10.1186/s13059-017-1185-3
[102]  Conboy, I.M., Conboy, M.J., Wa-gers, A.J., Girma, E.R., Weissman, I.L. and Rando, T.A. (2005) Rejuvenation of Aged Progenitor Cells by Exposure to a Young Systemic Environment. Nature, 433, 760-764. https://doi.org/10.1038/nature03260
[103]  Martel, J., Ojcius, D.M., Wu, C., Peng, H., Voisin, L., Perfettini, J., et al. (2020) Emerging Use of Senolytics and Senomorphics against Aging and Chronic Diseases. Medicinal Research Reviews, 40, 2114-2131. https://doi.org/10.1002/med.21702
[104]  Horvath, S., Zhang, Y., Langfelder, P., Kahn, R.S., Boks, M.P., van Eijk, K., et al. (2012) Aging Effects on DNA Methylation Modules in Human Brain and Blood Tissue. Genome Biology, 13, R97. https://doi.org/10.1186/gb-2012-13-10-r97
[105]  Yücel, A.D. and Gladyshev, V.N. (2024) The Long and Winding Road of Reprogramming-Induced Rejuvenation. Nature Communications, 15, Article No. 1941. https://doi.org/10.1038/s41467-024-46020-5
[106]  Menon, S., Monteleon, C., Rhodes, A.S.J., Sebastiano, V. and Hsia, E. (2024) Transient Epigenetic Reprogramming: The Future of Skin Rejuvenation. Dermatologic Surgery, 50, S145-S148. https://doi.org/10.1097/dss.0000000000004433

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133