全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Pharmacogenomic Approaches to Predicting Susceptibility to Neuroleptic Malignant Syndrome and Severe Anticholinergic Adverse Effects: A Multi-Modal Explainable AI Framework

DOI: 10.4236/oalib.1113517, PP. 1-19

Subject Areas: Psychiatry & Psychology, Artificial Intelligence

Keywords: Pharmacogenomics, Neuroleptic Malignant Syndrome, Deep Learning, Explainable AI, Precision Psychiatry

Full-Text   Cite this paper   Add to My Lib

Abstract

Neuroleptic Malignant Syndrome (NMS) and severe anticholinergic adverse drug reactions (ADRs) are rare but life-threatening complications associated with antipsychotic pharmacotherapy. These conditions often arise unpredictably, posing significant challenges in psychiatric clinical practice. Current risk stratification approaches lack the granularity to account for complex interplays between genetic predispositions, pharmacological profiles, and individual patient characteristics. In this study, we introduce a comprehensive pharmacogenomic risk prediction framework that integrates synthetic cohort simulation, genotypic modelling, and state-of-the-art explainable artificial intelligence (XAI). Our platform simulates a diverse patient population with realistic demographic, clinical, and pharmacokinetic parameters, incorporating known pharmacogenomic markers such as CYP2D6 (rs3892097), COMT (rs4680), DRD2 (rs1800497), and HTR2A (rs6311). A deep learning model augmented with multi-head attention mechanisms is employed to capture latent interactions among features, while SHAP (SHapley Additive exPlanations) is used for local and global model interpretability. The system demonstrates that polygenic risk scores (PRS), combined with drug dosage and EPS history, significantly improve predictive granularity, particularly for identifying high-risk cases. Notably, CYP2D6 and COMT polymorphisms emerged as dominant predictors for NMS and severe anticholinergic responses. Evaluation metrics, including confusion matrices, precision-recall curves, and ROC analysis, highlight the model’s capacity to differentiate reaction severities, though performance remains limited for intermediate classes such as Mild ADRs. This work underscores the potential of AI-enhanced pharmacogenomics for pre-emptive risk stratification, offering a practical path toward precision psychiatry and safer antipsychotic prescribing. Future extensions will focus on real-world validation using biobank-linked electronic health record (EHR) datasets and clinical deployment strategies.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Pharmacogenomic Approaches to Predicting Susceptibility to Neuroleptic Malignant Syndrome and Severe Anticholinergic Adverse Effects: A Multi-Modal Explainable AI Framework. Open Access Library Journal, 12, e3517. doi: http://dx.doi.org/10.4236/oalib.1113517.

References

[1]  Barnhill, J., Blanco, R.A., Napier, K. and Soda, T. (2023) Pharmacology, Psy-chopharmacology, and Adverse Drug Reactions. In: Eisenstat, D.D., Goldowitz, D., Oberlander, T.F. and Yager, J.Y., Eds., Neurodevelopmental Pediatrics, Springer International Publishing, 713-729. https://doi.org/10.1007/978-3-031-20792-1_44
[2]  Stingl, J.C., Just, K.S., Schurig, M., Böhme, M., Steffens, M., Schwab, M., et al. (2020) Prevalence of Psychotropic Drugs in Cases of Severe Adverse Drug Reactions Leading to Un-planned Emergency Visits in General Hospitals. Pharmacopsychiatry, 53, 133-137. https://doi.org/10.1055/a-1110-1010
[3]  Patel, T.K. and Patel, P.B. (2018) Mortality among Patients Due to Adverse Drug Reactions That Lead to Hospitalization: A Meta-Analysis. European Journal of Clinical Pharmacology, 74, 819-832. https://doi.org/10.1007/s00228-018-2441-5
[4]  de Leon, J., Ruan, C., Schoretsanitis, G. and De las Cuevas, C. (2020) A Rational Use of Clozapine Based on Adverse Drug Reactions, Pharmacokinetics, and Clinical Pharmacopsychology. Psychotherapy and Psychosomatics, 89, 200-214. https://doi.org/10.1159/000507638
[5]  Oruch, R., Pryme, I., Engelsen, B. and Lund, A. (2017) Neuroleptic Malignant Syndrome: An Easily Overlooked Neurologic Emergency. Neuropsychiatric Disease and Treatment, 13, 161-175. https://doi.org/10.2147/ndt.s118438
[6]  Strawn, J.R., Keck, P.E. and Caroff, S.N. (2007) Neuroleptic Malignant Syndrome. American Journal of Psychiatry, 164, 870-876. https://doi.org/10.1176/ajp.2007.164.6.870
[7]  Mann, S.C., Caroff, S.N., Keck, P.E. and Lazarus, A. (2008) Neuroleptic Malignant Syndrome and Related Conditions. American Psychiatric Pub.
[8]  Velamoor, V.R. (1998) Neuroleptic Malignant Syndrome. Drug Safety, 19, 73-82. https://doi.org/10.2165/00002018-199819010-00006
[9]  Ananth, J., Aduri, K., Parameswaran, S. and Gunatilake, S. (2004) Neuroleptic Malignant Syndrome: Risk Factors, Pathophysiology, and Treatment. Acta Neuropsychiatri-ca, 16, 219-228. https://doi.org/10.1111/j.0924-2708.2004.00085.x
[10]  Berman, B.D. (2011) Neuroleptic Malignant Syndrome. The Neurohospitalist, 1, 41-47. https://doi.org/10.1177/1941875210386491
[11]  Cuccarelli, M., Zampogna, A. and Suppa, A. (2024) The Broad Spectrum of Malignant Syndromes. Neuro-biology of Disease, 203, Article 106734. https://doi.org/10.1016/j.nbd.2024.106734
[12]  Ali, M. (2024) Anticholin-ergic Adverse Effects in Older People. Master’s Thesis, Lithuanian University of Health Sciences (Lithuania).
[13]  Gerretsen, P. and Pollock, B.G. (2011) Drugs with Anticholinergic Properties: A Current Perspective on Use and Safety. Ex-pert Opinion on Drug Safety, 10, 751-765. https://doi.org/10.1517/14740338.2011.579899
[14]  Bisharah, D. (2023) Anticholinergics, Antipsychotics and Associated Risks in Dementia Seeking to improve the Safety of Prescribing.
[15]  Britt, D.M. and Day, G.S. (2016) Over-Prescribed Medications, Under-Appreciated Risks: A Review of the Cogni-tive Effects of Anticholinergic Medications in Older Adults. Missouri Medicine, 113, 207-214.
[16]  Pierce, D.V. (2024) Insights and Advancing Mental Health Care: The Utility of Ad-ministrative Health Records.
[17]  Jannink, L. (2025) Pharmacogentics in Transition: Overcoming Barriers to Pre-Emptive Pharmaco-genetic Testing Implementation for Enhanced Healthcare in the Netherlands. Master’s Thesis, Utrecht University.
[18]  Schicktanz, S., Alpinar-Segawa, Z., Ulitsa, N., Perry, J. and Werner, P. (2024) Moving Towards Ethical-Practical Recommendations for Alzheimer’s Disease Prediction: Addressing Interindivid-ual, Interprofessional, and Societal Aspects. Journal of Alzheimer’s Disease, 101, 1063-1081. https://doi.org/10.3233/jad-231137
[19]  Gurung, A. (2024) Transformative Ability of Artificial Intelligence in Risk Manage-ment.
[20]  Pore, A.V., Bais, S.K. and Kamble, M.M. (2024) Pharmacovigilance in Clinical Re-search. International Journal of Pharmacy and Herbal Technology, 2, 759-775.
[21]  Ahire, Y.S., Patil, J.H., Chordiya, H.N., Deore, R.A. and Bairagi, V.A. (2024) Advanced Applications of Artificial Intelligence in Pharmacovigi-lance: Current Trends and Future Perspectives. Journal of Pharmaceutical Re-search, 23, 23-33. https://doi.org/10.18579/jopcr/v23.1.24
[22]  Pappa, D. (2018) The Knowledge Discovery Cube Framework A Reference Framework for Collaborative, Information-Driven Pharmacovigilance. University of Surrey (United Kingdom).
[23]  Savaré, L. (2023) Enhancing the Role of Real-World Data in Healthcare Research through Advanced Statistical Methods.
[24]  Ser-retti, A., Drago, A. and De Ronchi, D. (2007) HTR2A Gene Variants and Psychi-atric Disorders: A Review of Current Literature and Selection of SNPs for Future Studies. Current Medicinal Chemistry, 14, 2053-2069. https://doi.org/10.2174/092986707781368450
[25]  Cacabelos, R., Martinez-Bouza, R., Carlos Carril, J., Fernandez-Novoa, L., Lombardi, V., Carrera, I., et al. (2012) Genomics and Pharmacogenomics of Brain Disorders. Current Pharmaceutical Biotechnology, 13, 674-725. https://doi.org/10.2174/138920112799857576
[26]  Vuletić, V., Rački, V., Papić, E. and Peterlin, B. (2021) A Systematic Review of Parkinson’s Disease Pharmacogenomics: Is There Time for Translation into the Clinics? International Journal of Molecular Sciences, 22, Article 7213. https://doi.org/10.3390/ijms22137213
[27]  Arranz, M.J., Salazar, J. and Hernández, M.H. (2021) Pharmacogenetics of Antipsychotics: Clinical Utility and Implementation. Behavioural Brain Research, 401, Article 113058. https://doi.org/10.1016/j.bbr.2020.113058
[28]  Yoshida, K. and Müller, D.J. (2018) Pharmacogenetics of Antipsychotic Drug Treatment: Update and Clinical Implications. Complex Psychiatry, 5, 1-26. https://doi.org/10.1159/000492332
[29]  Kirchmair, J., Göller, A.H., Lang, D., Kunze, J., Testa, B., Wilson, I.D., et al. (2015) Predicting Drug Metabolism: Ex-periment and/or Computation? Nature Reviews Drug Discovery, 14, 387-404. https://doi.org/10.1038/nrd4581
[30]  Terranova, N. and Venkatakrishnan, K. (2024) Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model‐Informed Precision Medicine. Clini-cal Pharmacology & Therapeutics, 115, 720-726. https://doi.org/10.1002/cpt.3153
[31]  Ching, T., Himmelstein, D.S., Beau-lieu-Jones, B.K., Kalinin, A.A., Do, B.T., Way, G.P., et al. (2018) Opportunities and Obstacles for Deep Learning in Biology and Medicine. Journal of The Royal Society Interface, 15, Article 20170387. https://doi.org/10.1098/rsif.2017.0387
[32]  Ding, Y., Hou, K., Burch, K.S., Lapinska, S., Privé, F., Vilhjálmsson, B., et al. (2021) Large Uncertainty in Indi-vidual Polygenic Risk Score Estimation Impacts Prs-Based Risk Stratification. Nature Genetics, 54, 30-39. https://doi.org/10.1038/s41588-021-00961-5
[33]  Chatterjee, N., Shi, J. and García-Closas, M. (2016) Developing and Evaluating Polygenic Risk Prediction Models for Stratified Disease Prevention. Nature Reviews Genetics, 17, 392-406. https://doi.org/10.1038/nrg.2016.27
[34]  Konuma, T. and Okada, Y. (2021) Statistical Genetics and Polygenic Risk Score for Precision Medicine. Inflamma-tion and Regeneration, 41, Article No. 18. https://doi.org/10.1186/s41232-021-00172-9
[35]  Krittanawong, C., John-son, K.W., Choi, E., Kaplin, S., Venner, E., Murugan, M., et al. (2022) Artificial Intelligence and Cardiovascular Genetics. Life, 12, Article 279. https://doi.org/10.3390/life12020279
[36]  Alsubaie, M.G., Luo, S. and Shaukat, K. (2024) Alzheimer’s Disease Detection Using Deep Learning on Neuroimaging: A Systematic Review. Machine Learning and Knowledge Extrac-tion, 6, 464-505. https://doi.org/10.3390/make6010024
[37]  Ajnakina, O., Fadilah, I., Quattrone, D., Arango, C., Berardi, D., Bernardo, M., et al. (2023) Development and Validation of Predictive Model for a Diagnosis of First Episode Psychosis Using the Multinational EU-GEI Case-Control Study and Modern Sta-tistical Learning Methods. Schizophrenia Bulletin Open, 4, sgad008. https://doi.org/10.1093/schizbullopen/sgad008
[38]  van Westrhenen, R., Aitchison, K.J., Ingelman-Sundberg, M. and Jukić, M.M. (2020) Phar-macogenomics of Antidepressant and Antipsychotic Treatment: How Far Have We Got and Where Are We Going? Frontiers in Psychiatry, 11, Article 94. https://doi.org/10.3389/fpsyt.2020.00094
[39]  Toffol, M. (2022) Phar-macogenomic Analysis of Neuroleptic Malignant Syndrome.
[40]  Pouget, J.G., Shams, T.A., Tiwari, A.K. and Müller, D.J. (2014) Pharmacogenetics and Out-come with Antipsychotic Drugs. Dialogues in Clinical Neuroscience, 16, 555-566. https://doi.org/10.31887/dcns.2014.16.4/jpouget
[41]  van Veen, E.M., Brentnall, A.R., Byers, H., Harkness, E.F., Astley, S.M., Sampson, S., et al. (2018) Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Clas-sic Risk Factors for Breast Cancer Risk Prediction. JAMA Oncology, 4, 476-482. https://doi.org/10.1001/jamaoncol.2017.4881
[42]  Leaché, A.D. and Oaks, J.R. (2017) The Utility of Single Nucleotide Polymorphism (SNP) Data in Phylo-genetics. Annual Review of Ecology, Evolution, and Systematics, 48, 69-84. https://doi.org/10.1146/annurev-ecolsys-110316-022645
[43]  Dalla-Torre, H., Gonzalez, L., Mendoza-Revilla, J., Carranza, N.L., Grzywaczewski, A.H., Oteri, F., Dallago, C., et al. (2024) Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics. bioRxiv Pre-print.
[44]  Hammad, M.M. (2024) Deep Learning Activation Functions: Fixed-Shape, Parametric, Adaptive, Stochastic, Miscellaneous, Non-Standard, Ensemble. arXiv:2407.11090.
[45]  Dubey, S.R., Singh, S.K. and Chaudhuri, B.B. (2022) Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark. Neurocomputing, 503, 92-108. https://doi.org/10.1016/j.neucom.2022.06.111
[46]  Misra, D. (2019) Mish: A Self Regularized Non-Monotonic Activation Function. arXiv:1908.08681.
[47]  Laios, A., Kalampokis, E., Johnson, R., Munot, S., Thangavelu, A., Hutson, R., et al. (2022) Factors Predicting Surgical Effort Using Explainable Artificial Intelligence in Advanced Stage Epithelial Ovarian Cancer. Cancers, 14, Article 3447. https://doi.org/10.3390/cancers14143447
[48]  Rotink, D. (2024) Identifying Influential Variables for an Explainable AI Based Clinical Decision Support Sys-tem in the Healthcare Industry. Master’s Thesis, University of Twen-te.
[49]  Chari, S., Acharya, P., Gruen, D.M., Zhang, O., Eyigoz, E.K., Ghalwash, M., et al. (2023) Informing Clinical Assessment by Contextualizing Post-Hoc Ex-planations of Risk Prediction Models in Type-2 Diabetes. Artificial Intelligence in Medicine, 137, Article 102498. https://doi.org/10.1016/j.artmed.2023.102498
[50]  Hall, K.T., Loscalzo, J. and Kaptchuk, T.J. (2019) Systems Pharmacogenomics—Gene, Disease, Drug and Placebo Interactions: A Case Study in COMT. Pharmacogenomics, 20, 529-551. https://doi.org/10.2217/pgs-2019-0001
[51]  Meyer-Lindenberg, A., Nichols, T., Callicott, J.H., Ding, J., Kolachana, B., Buckholtz, J., et al. (2006) Impact of Complex Genetic Variation in COMT on Human Brain Function. Molec-ular Psychiatry, 11, 867-877. https://doi.org/10.1038/sj.mp.4001860
[52]  Jostins, L. and Barrett, J.C. (2011) Genetic Risk Prediction in Complex Disease. Human Molecular Genetics, 20, R182-R188. https://doi.org/10.1093/hmg/ddr378
[53]  Wray, N.R., God-dard, M.E. and Visscher, P.M. (2008) Prediction of Individual Genetic Risk of Complex Disease. Current Opinion in Genetics & Development, 18, 257-263. https://doi.org/10.1016/j.gde.2008.07.006
[54]  Kamps, R., Brandão, R., Bosch, B., Paulussen, A., Xanthoulea, S., Blok, M., et al. (2017) Next-Generation Sequencing in Oncology: Genetic Diagnosis, Risk Prediction and Cancer Classifi-cation. International Journal of Molecular Sciences, 18, Article 308. https://doi.org/10.3390/ijms18020308
[55]  Nebert, D.W., Zhang, G. and Ve-sell, E.S. (2013) Genetic Risk Prediction: Individualized Variability in Suscepti-bility to Toxicants. Annual Review of Pharmacology and Toxicology, 53, 355-375. https://doi.org/10.1146/annurev-pharmtox-011112-140241
[56]  Wilke, R.A., Lin, D.W., Roden, D.M., Watkins, P.B., Flockhart, D., Zineh, I., et al. (2007) Identifying Genetic Risk Factors for Serious Adverse Drug Reactions: Current Progress and Challenges. Nature Reviews Drug Discovery, 6, 904-916. https://doi.org/10.1038/nrd2423
[57]  Karczewski, K.J. and Snyder, M.P. (2018) Integrative Omics for Health and Disease. Nature Reviews Genetics, 19, 299-310. https://doi.org/10.1038/nrg.2018.4
[58]  Ogunjobi, T.T., Ohaeri, P.N., Akintola, O.T., Atanda, D.O., Orji, F.P., Adebayo, J.O., et al. (2024) Bioin-formatics Applications in Chronic Diseases: A Comprehensive Review of Ge-nomic, Transcriptomics, Proteomic, Metabolomics, and Machine Learning Ap-proaches. Medinformatics, 1-18. https://doi.org/10.47852/bonviewmedin42022335
[59]  Ng, K., Kartoun, U., Stavropoulos, H., Zambrano, J.A. and Tang, P.C. (2021) Personalized Treatment Options for Chronic Diseases Using Precision Cohort Analytics. Scientific Reports, 11, Article 1139. https://doi.org/10.1038/s41598-021-80967-5
[60]  Sendak, M., Elish, M.C., Gao, M., Futoma, J., Ratliff, W., Nichols, M., et al. (2020) “The Human Body Is a Black Box”: Supporting Clinical Decision-Making with Deep Learning. Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, Barcelona, 27-30 January 2020, 99-109. https://doi.org/10.1145/3351095.3372827
[61]  Nasarian, E., Alizadehsani, R., Acharya, U.R. and Tsui, K. (2024) Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Cli-nician-AI-Collaboration Framework. Information Fusion, 108, Article 102412. https://doi.org/10.1016/j.inffus.2024.102412
[62]  Sampson, C.J., Arnold, R., Bryan, S., Clarke, P., Ekins, S., Hatswell, A., et al. (2019) Transparency in Deci-sion Modelling: What, Why, Who and How? PharmacoEconomics, 37, 1355-1369. https://doi.org/10.1007/s40273-019-00819-z
[63]  Kaur, S., Kim, R., Javagal, N., Calderon, J., Rodriguez, S., Murugan, N., et al. (2024) Preci-sion Medicine with Data-Driven Approaches: A Framework for Clinical Transla-tion. Advanced International Journal of Multidisciplinary Research, 2. https://doi.org/10.62127/aijmr.2024.v02i05.1077
[64]  Cogno, N., Axenie, C., Bauer, R. and Vavourakis, V. (2024) Agent-Based Modeling in Cancer Biomedi-cine: Applications and Tools for Calibration and Validation. Cancer Biology & Therapy, 25, Article 2344600. https://doi.org/10.1080/15384047.2024.2344600
[65]  Chianumba, E.C., Ikhalea, N., Mustapha, A.Y. and Forkuo, A.Y. (2022) Developing a Framework for Using AI in Personalized Medicine to Optimize Treatment Plans. Journal of Frontiers in Multidisciplinary Research, 3, 57-71. https://doi.org/10.54660/.ijfmr.2022.3.1.57-71
[66]  Jin, P., Zhu, B., Li, Y. and Yan, S. (2024) Moh: Multi-Head Attention as Mixture-of-Head Attention. arXiv:2410.11842.
[67]  Zhang, Y., Liu, C., Liu, M., Liu, T., Lin, H., Huang, C., et al. (2023) Attention Is All You Need: Utilizing Attention in AI-Enabled Drug Discovery. Briefings in Bioinformatics, 25, bbad467. https://doi.org/10.1093/bib/bbad467
[68]  An, Z. and Joe, I. (2024) TMH: Two-Tower Multi-Head Attention Neural Network for CTR Prediction. PLOS ONE, 19, e0295440. https://doi.org/10.1371/journal.pone.0295440

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133