全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Mechanisms and Risk Factors Linking Neuroleptic Malignant Syndrome (NMS) to Dopaminergic and Autonomic Dysfunction

DOI: 10.4236/oalib.1113516, PP. 1-20

Subject Areas: Psychiatry & Psychology

Keywords: Neuroleptic Malignant Syndrome, Machine Learning, Simulation Modelling, Clinical Decision Support, Pharmacovigilance

Full-Text   Cite this paper   Add to My Lib

Abstract

Neuroleptic Malignant Syndrome (NMS) is a rare but life-threatening neurological emergency that arises primarily from the use of dopamine antagonist antipsychotic medications. Clinically, it is characterized by hyperthermia, muscle rigidity, altered mental status, and signs of autonomic dysregulation. Despite being a well-documented phenomenon, the underlying pathophysiological mechanisms of NMS remain poorly understood, and early detection remains a clinical challenge. This study introduces a comprehensive and explainable data-driven framework aimed at elucidating the multifactorial etiology of NMS. We developed a high-fidelity synthetic dataset representing patients exposed to antipsychotic therapies and modelled key variables such as dopaminergic blockade, anticholinergic burden, autonomic instability, creatine kinase levels, and fever. Using this dataset, we performed logistic regression to evaluate risk contributions, XGBoost classification to determine feature importance, and survival analysis (Kaplan-Meier and Cox models) to assess the temporal dimension of disease progression. Additionally, a mechanistic network model was constructed to visualize how pharmacological and physiological components converge to produce the NMS phenotype. Our findings indicate that fever and elevated creatine kinase are robust biomarkers of NMS, while autonomic and dopaminergic pathways appear to interact synergistically to exacerbate clinical outcomes. The XGBoost model achieved strong predictive performance (AUC = 0.93), reinforcing the clinical relevance of our feature selection. Overall, this research bridges the gap between statistical inference, machine learning, and neuropharmacological theory. It lays the foundation for developing early-warning tools, risk stratification systems, and personalized interventions in psychiatry. Future directions include real-world validation, temporal modelling, and integration with electronic health record systems for clinical deployment.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Mechanisms and Risk Factors Linking Neuroleptic Malignant Syndrome (NMS) to Dopaminergic and Autonomic Dysfunction. Open Access Library Journal, 12, e3516. doi: http://dx.doi.org/10.4236/oalib.1113516.

References

[1]  Oruch, R., Pryme, I., Engelsen, B. and Lund, A. (2017) Neuroleptic Malignant Syndrome: An Easily Overlooked Neurologic Emergency. Neuropsychiatric Disease and Treatment, 13, 161-175. https://doi.org/10.2147/ndt.s118438
[2]  Trollor, J.N., Chen, X. and Sachdev, P.S. (2009) Neuroleptic Malignant Syndrome Associated with Atypical Antipsychotic Drugs. CNS Drugs, 23, 477-492. https://doi.org/10.2165/00023210-200923060-00003
[3]  Margetić, B. and Margetić, B.A. (2010) Neuroleptic Malignant Syndrome and Its Controversies. Pharmacoepidemiology and Drug Safety, 19, 429-435. https://doi.org/10.1002/pds.1937
[4]  Calvo-Romero, J.M., Bonilla-Gracia, M.d.C., Ramos-Salado, J.L. and Bureo-Dacal, P. (2000) Rigidity, Hyperthermia, and Altered Mental Status. Postgraduate Medical Journal, 76, Article No. 717. https://doi.org/10.1136/pmj.76.901.717a
[5]  Hodges, K. and Bourgeois, J.A. (2023) Muscle Tension. In: Meyer, E.G., Cozza, K.L. and Bourgeois, J.A., Eds., The Medical Evaluation of Psychiatric Symptoms, Springer International Publishing, 213-238. https://doi.org/10.1007/978-3-031-14372-4_8
[6]  Munhoz, R.P., Moscovich, M., Araujo, P.D. and Teive, H.A.G. (2012) Movement Disorders Emergencies: A Review. Arquivos de Neuro-Psiquiatria, 70, 453-461. https://doi.org/10.1590/s0004-282x2012000600013
[7]  Marshall, D.L., Hazlet, T.K., Gardner, J.S. and Blough, D.K. (2002) Neuroleptic Drug Exposure and Incidence of Tardive Dyskinesia: A Records-Based Case-Control Study. Journal of Managed Care Pharmacy, 8, 259-265. https://doi.org/10.18553/jmcp.2002.8.4.259
[8]  Su, Y., Chang, C., Hayes, R.D., Harrison, S., Lee, W., Broadbent, M., et al. (2013) Retrospective Chart Review on Exposure to Psychotropic Medications As-sociated with Neuroleptic Malignant Syndrome. Acta Psychiatrica Scandinavica, 130, 52-60. https://doi.org/10.1111/acps.12222
[9]  Johnson, S., Dalton‐Locke, C., Baker, J., Hanlon, C., Salisbury, T.T., Fossey, M., et al. (2022) Acute Psychiatric Care: Approaches to Increasing the Range of Services and Improving Access and Quality of Care. World Psychiatry, 21, 220-236. https://doi.org/10.1002/wps.20962
[10]  Larkin, G.L., Beautrais, A.L., Spirito, A., Kirrane, B.M., Lippmann, M.J. and Milzman, D.P. (2009) Mental Health and Emergency Medicine: A Research Agenda. Ac-ademic Emergency Medicine, 16, 1110-1119. https://doi.org/10.1111/j.1553-2712.2009.00545.x
[11]  Alkahtani, S., AL-Johani, N.S. and Alarifi, S. (2023) Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Dis-orders: Current and Future Prospects. International Journal of Molecular Sciences, 24, Article No. 1340. https://doi.org/10.3390/ijms24021340
[12]  Tanaka, M., Szabó, á., Spekker, E., Polyák, H., Tóth, F. and Vécsei, L. (2022) Mitochondrial Impairment: A Common Motif in Neuropsychiatric Presentation? The Link to the Tryptophan-Kynurenine Metabolic System. Cells, 11, Article No. 2607. https://doi.org/10.3390/cells11162607
[13]  Morrison, S.F. and Nakamura, K. (2019) Central Mechanisms for Thermoregulation. Annual Review of Physiology, 81, 285-308. https://doi.org/10.1146/annurev-physiol-020518-114546
[14]  Nakamura, K., Nakamura, Y. and Kataoka, N. (2021) A Hypothalamomedullary Network for Physiological Responses to Environmental Stresses. Nature Reviews Neuroscience, 23, 35-52. https://doi.org/10.1038/s41583-021-00532-x
[15]  Healy, D. (2023) The Past, Present and Future of Anticholin-ergic Drugs. Therapeutic Advances in Psychopharmacology, 13. https://doi.org/10.1177/20451253231176375
[16]  Nishtala, P.S., Salahudeen, M.S. and Hilmer, S.N. (2016) Anticholin-ergics: Theoretical and Clinical Overview. Expert Opinion on Drug Safety, 15, 753-768. https://doi.org/10.1517/14740338.2016.1165664
[17]  Provenzano, M., Rotundo, S., Chiodini, P., Gagliardi, I., Michael, A., Angotti, E., et al. (2020) Contribution of Predictive and Prognostic Biomarkers to Clinical Research on Chronic Kidney Disease. International Journal of Molecular Sciences, 21, Article No. 5846. https://doi.org/10.3390/ijms21165846
[18]  Md Sani, S.S., Han, W.H., Bujang, M.A., Ding, H.J., Ng, K.L. and Amir Shar-iffuddin, M.A. (2017) Evaluation of Creatine Kinase and Liver Enzymes in Identification of Severe Dengue. BMC Infectious Diseases, 17, Article No. 505. https://doi.org/10.1186/s12879-017-2601-8
[19]  Mesinovic, M., Watkinson, P. and Zhu, T.T. (2023) Explainable AI for Clinical Risk Prediction: A Survey of Concepts, Methods, and Modalities.
[20]  Nasarian, E., Alizadehsani, R., Acharya, U.R. and Tsui, K. (2024) Designing Interpretable ML System to Enhance Trust in Healthcare: A Systematic Review to Proposed Responsible Clinician-Ai-Collaboration Framework. Information Fusion, 108, Article ID: 102412. https://doi.org/10.1016/j.inffus.2024.102412
[21]  Nkechinyere Njoku, J., Ifeanyi Nwakanma, C. and Kim, D. (2024) Explainable Data-Driven Digital Twins for Predicting Battery States in Electric Vehicles. IEEE Access, 12, 83480-83501. https://doi.org/10.1109/access.2024.3413075
[22]  Alfalahi, H., Dias, S.B., Khandoker, A.H., Chaudhuri, K.R. and Hadjileontiadis, L.J. (2023) A Scoping Review of Neurodegenerative Manifestations in Explainable Digital Pheno-typing. NPJ Parkinson’s Disease, 9, Article No. 49. https://doi.org/10.1038/s41531-023-00494-0
[23]  Raith, H. (2020) Preclinical Telemetric EEG Recordings and Behavioral Measurements to Investigate Efficacy and Tolerability in Psychiatric Drug Discovery. PhD Diss., Universität Ulm.
[24]  Marian, F. (2019) Prediction of Lactate Kinetics by Tracking Cardiovascu-lar Auto-nomic Changes during Vasopressor Administration.
[25]  Siafis, S., Wu, H., Wang, D., Burschinski, A., Nomura, N., Takeuchi, H., et al. (2023) Antipsychotic Dose, Dopamine D2 Receptor Occupancy and Extrapyramidal Side-Effects: A Sys-tematic Review and Dose-Response Meta-Analysis. Molecular Psychiatry, 28, 3267-3277. https://doi.org/10.1038/s41380-023-02203-y
[26]  Pani, L., Pira, L. and Marchese, G. (2007) Antipsychotic Efficacy: Re-lationship to Optimal D2-Receptor Occupancy. European Psychiatry, 22, 267-275. https://doi.org/10.1016/j.eurpsy.2007.02.005
[27]  Granger, K.T., Sand, M., Caswell, S., Lizarraga-Valderrama, L.R., Bar-nett, J.H. and Moran, P.M. (2023) A New Era for Schizophrenia Drug Development—Lessons for the Future. Drug Discovery Today, 28, Article ID: 103603. https://doi.org/10.1016/j.drudis.2023.103603
[28]  Rudd, J.M. and Ray, H. (2020) An Empirical Study of Downstream Analysis Effects of Model Pre-Processing Choices. Open Journal of Statistics, 10, 735-809. https://doi.org/10.4236/ojs.2020.105046
[29]  Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I., Er-ramuzpe, A., et al. (2018) Fmriprep: A Robust Preprocessing Pipeline for Functional MRI. Nature Methods, 16, 111-116. https://doi.org/10.1038/s41592-018-0235-4
[30]  Dhawas, P., Dhore, A., Bhagat, D., Pawar, R.D., Kukade, A. and Kal-bande, K. (2024) Big Data Preprocessing, Techniques, Integration, Transformation, Normalisation, Cleaning, Discretization, and Binning. In: Darwish, D., Ed., Big Data Analytics Techniques for Market Intelligence, IGI Global, 159-182. https://doi.org/10.4018/979-8-3693-0413-6.ch006
[31]  Berardi, D., Amore, M., Keck, P.E., Troia, M. and Dell’Atti, M. (1998) Clinical and Pharmacologic Risk Factors for Neuroleptic Malignant Syndrome: A Case-Control Study. Biological Psy-chiatry, 44, 748-754. https://doi.org/10.1016/s0006-3223(97)00530-1
[32]  Guinart, D., Taipale, H., Rubio, J.M., Tanskanen, A., Correll, C.U., Tiihonen, J., et al. (2021) Risk Factors, Incidence, and Outcomes of Neuroleptic Malignant Syn-drome on Long-Acting Injectable vs Oral Antipsychotics in a Nationwide Schizophrenia Cohort. Schizophrenia Bulletin, 47, 1621-1630. https://doi.org/10.1093/schbul/sbab062
[33]  Abdulqader, H.A. and Abdulazeez, A.M. (2024) Review on Decision Tree Algorithm in Healthcare Applications. Indonesian Journal of Computer Science, 13, 3863-3881. https://doi.org/10.33022/ijcs.v13i3.4026
[34]  Wu, D., Cui, G., Huang, X., Chen, Y., Liu, G., Ren, L., et al. (2022) An Accu-rate and Explainable Ensemble Learning Method for Carotid Plaque Prediction in an Asymptomatic Population. Computer Methods and Programs in Biomedicine, 221, Article ID: 106842. https://doi.org/10.1016/j.cmpb.2022.106842
[35]  Sahin, E.K. (2020) Assessing the Predictive Capability of Ensemble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest. SN Ap-plied Sciences, 2, Article No. 1308. https://doi.org/10.1007/s42452-020-3060-1
[36]  Huang, J. and Ling, C.X. (2005) Using AUC and Accuracy in Evaluating Learning Algorithms. IEEE Transactions on Knowledge and Data Engineering, 17, 299-310. https://doi.org/10.1109/tkde.2005.50
[37]  NS, NSNS (2014) Acute Heart Failure-Poster Present-ed.
[38]  Feigin, V.L. and Giroud, M. (2012) 2nd International Congress on Neurology and Epidemiology. Neuroepidemiolo-gy, 39, 177-283.
[39]  Al-Shaikh, Hanna, R., Prudencio, M., Jansen-West, K., Petrucelli, L. and Wszolek, Z. (2008) Bi-omarker Studies in Spinocerebellar Ataxia Type 3. Psychiatry, 79, 315-317.
[40]  Howroyd, F., Capewell, R. and Small, C. (2018) Intensive Care Society State of the Art. Journal of the Intensive Care Society, 19, 1-162.
[41]  Sharafi, M., Mohsen-pour, M.A., Afrashteh, S., Eftekhari, M.H., Dehghan, A., Farhadi, A., et al. (2024) Factors Affecting the Survival of Predia-betic Patients: Comparison of Cox Proportional Hazards Model and Random Survival Forest Method. BMC Medical Informat-ics and Decision Making, 24, Article No. 246. https://doi.org/10.1186/s12911-024-02648-3
[42]  Pourhoseingholi, M.A., Hajizadeh, E., Dehkordi, B.M., et al. (2007) Comparing Cox Regression and Parametric Models for Survival of Patients with Gastric Carcinoma. Asian Pacific Journal of Cancer Prevention, 8, 412.
[43]  Xu, E., Vanghelof, J., Wang, Y., Patel, A., Furst, J., Raicu, D.S., et al. (2024) Outcome Risk Model Development for Heterogeneity of Treatment Effect Analyses: A Compari-son of Non-Parametric Machine Learning Methods and Semi-Parametric Statistical Methods. BMC Medical Research Meth-odology, 24, Article No. 158. https://doi.org/10.1186/s12874-024-02265-8
[44]  Vázquez, B., Fuentes-Pineda, G., García, F., Borrayo, G. and Prohías, J. (2021) Risk Markers by Sex for In-Hospital Mortality in Patients with Acute Coronary Syn-drome: A Machine Learning Approach. Informatics in Medicine Unlocked, 27, Article ID: 100791. https://doi.org/10.1016/j.imu.2021.100791
[45]  Li, C., Chen, L., Chou, C., et al. (2022) Using Machine Learning Ap-proaches to Predict Short-Term Risk of Cardiotoxicity among Patients with Colorectal Cancer after Starting Fluoropyrimi-dine-Based Chemotherapy. Cardiovascular Toxicology, 22, 130-140.
[46]  Moody, J., McFarland, D. and Bender-deMoll, S. (2005) Dynamic Network Visualization. American Journal of Sociology, 110, 1206-1241. https://doi.org/10.1086/421509
[47]  Moscato, M. (2024) Analysing and Reaccessing Texts through Character Interac-tion Network: The Interpoetic Narrative of Spoon River Anthology.
[48]  Tian, J., Jiang, Y., Zhang, J., Wang, Z., Rodríguez-Andina, J.J. and Luo, H. (2022) High-Performance Fault Classification Based on Feature Importance Rank-ing-Xgboost Approach with Feature Selection of Redundant Sensor Data. Current Chinese Science, 2, 243-251. https://doi.org/10.2174/2210298102666220318100051
[49]  Wang, Y. and Sherry Ni, X. (2019) A XGBoost Risk Model via Feature Selection and Bayesian Hyper-Parameter Optimization. International Journal of Database Management Systems, 11, 1-17. https://doi.org/10.5121/ijdms.2019.11101
[50]  Cygu, S., Seow, H., Dushoff, J. and Bolker, B.M. (2023) Com-paring Machine Learning Approaches to Incorporate Time-Varying Covariates in Predicting Cancer Survival Time. Scientific Reports, 13, Article No. 1370. https://doi.org/10.1038/s41598-023-28393-7
[51]  Symes, Y.R., Westmaas, J.L., Mayer, D.K., Boynton, M.H., Ribisl, K.M. and Golden, S.D. (2018) The Impact of Psychosocial Characteristics in Predicting Smoking Cessation in Long‐Term Cancer Survivors: A Time‐to‐Event Analysis. Psycho-Oncology, 27, 2458-2465. https://doi.org/10.1002/pon.4851
[52]  Martins, I.L.F., Almeida, F.V.d.S., Souza, K.P.d., Brito, F.C.F.d., Rodrigues, G.D. and Scaramello, C.B.V. (2023) Reviewing Atrial Fibrillation Pathophysiology from a Network Medicine Perspective: The Rele-vance of Structural Remodeling, Inflammation, and the Immune System. Life, 13, Article No. 1364. https://doi.org/10.3390/life13061364
[53]  Niephaus, A., Kruppa, J.A., Dukart, J., et al. (2023) Revealing the Neurobiol-ogy Underlying Interpersonal Neural Synchronization with Multimodal Data Fusion. Neuroscience & Biobehavioral Reviews, 146, Article ID: 105042.
[54]  Ananth, J., Aduri, K., Parameswaran, S. and Gunatilake, S. (2004) Neuroleptic Malignant Syndrome: Risk Factors, Pathophysiology, and Treatment. Acta Neuropsychiatrica, 16, 219-228. https://doi.org/10.1111/j.0924-2708.2004.00085.x
[55]  Pileggi, D.J. and Cook, A.M. (2016) Neuroleptic Malignant Syn-drome: Focus on Treatment and Rechallenge. Annals of Pharmacotherapy, 50, 973-981. https://doi.org/10.1177/1060028016657553
[56]  Locatelli, C.A., Lonati, D., Schicchi, A. and Petrolini, V.M. (2023) Au-tonomic Dysfunction Due to Toxic Agents and Drugs. In: Micieli, G., Hilz, M. and Cortelli, P., Eds., Autonomic Disorders in Clinical Practice, Springer International Publishing, 397-432. https://doi.org/10.1007/978-3-031-43036-7_19
[57]  Maldonado, J.R. (2017) Delirium Pathophysiology: An Updated Hypothesis of the Etiology of Acute Brain Failure. International Journal of Geriatric Psychiatry, 33, 1428-1457. https://doi.org/10.1002/gps.4823
[58]  Shkodina, A., Iengalychev, T., Tarianyk, K., Boiko, D., Lytvynenko, N. and Skryp-nikov, A. (2022) Relationship between Sleep Disorders and Neuropsychiatric Symptoms in Parkinson’s Disease: A Narrative Review. Acta Facultatis Medicae Naissensis, 39, 259-274. https://doi.org/10.5937/afmnai39-33652
[59]  Rubin, I.L., Coles, C.D. and Barnhill, J. (2023) Behavioral and Mental Health Disorders (Including Attentional Disorders). In: Eisenstat, D.D., et al., Eds., Neurodevelopmental Pediatrics: Genetic and Environmental Influences, Springer International Publishing, 655-674. https://doi.org/10.1007/978-3-031-20792-1_40
[60]  Pessôa, B.L., Netto, J.G.M., Adolphsson, L., Longo, L., Hauwanga, W.N. and McBenedict, B. (2024) Complex Regional Pain Syndrome: Diagnosis, Pathophysiology, and Treatment Approaches. Cureus, 16, e76324.
[61]  Alganmi, N. (2024) A Comprehensive Review of the Impact of Machine Learning and Omics on Rare Neurological Diseases. BioMedInformatics, 4, 1329-1347. https://doi.org/10.3390/biomedinformatics4020073
[62]  Jaroszewska, A., Battsengel, U. and Zadorozna, Z. (2024) Reas-sessment of the Underlying Mechanisms That Contribute to the Neurological Disorders Linked to Long-Term Covid-19. Dis-aster and Emergency Medicine Journal, 9, 129-130. https://doi.org/10.5603/demj.100529
[63]  Praschan, N., Beach, S.R., Fricchione, G.L., Huffman, J.C. and Stern, T.A. (2025) Catatonia, Neuroleptic Malignant Syndrome, and Serotonin Syn-drome. In: Stern, T.A., et al., Eds., Massachusetts General Hospital Comprehensive Clinical Psychiatry, Elsevier, 424-435. https://doi.org/10.1016/b978-0-443-11844-9.00038-2
[64]  Beach, P. and Lenka, A. (2024) Recent Updates in Auto-nomic Research: Orthostatic Hypotension in Prodromal Synucleinopathy; Longitudinal Morbidity and Mortality in Orthostatic Hypotension with and without Supine Hypertension; a Cardiac Vagal Sensory System Underlying Reflex Syncope. Clinical Autonomic Research, 34, 13-15. https://doi.org/10.1007/s10286-023-01011-2
[65]  Uddin, M.S. and Rashid, M. (2020) Advances in Neuropharmacology: Drugs and Therapeutics. CRC Press.
[66]  Zawar, I., Caro, M.A., Feldman, L. and Jimenez, X.F. (2016) Acute Movement Disorders in the Medical Setting: A Case Series, Neurophysiological Model, and Literature Re-view. The International Journal of Psychiatry in Medicine, 51, 395-413. https://doi.org/10.1177/0091217416680202
[67]  Gratz, S.S. and Simpson, G.M. (1994) Neuroleptic Malignant Syn-drome: Diagnosis, Epidemiology and Treatment. CNS Drugs, 2, 429-439. https://doi.org/10.2165/00023210-199402060-00004

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133