全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Machine Learning Analysis of Pramipexole Augmentation in Treatment-Resistant Depression: Identifying Predictors of Response

DOI: 10.4236/oalib.1113515, PP. 1-15

Subject Areas: Machine Learning, Artificial Intelligence

Keywords: Treatment-Resistant Depression, Pramipexole Augmentation, Machine Learning, Predictive Modelling, Precision Psychiatry

Full-Text   Cite this paper   Add to My Lib

Abstract

Background: Treatment-resistant depression (TRD) poses significant clinical challenges, with many patients inadequately responding to augmentation strategies like aripiprazole. Pramipexole, a dopamine agonist, has emerged as a promising alternative, though predictors of response remain unclear. This study applies machine learning (ML) to identify predictors and subgroups influencing pramipexole augmentation (PA) effectiveness in TRD, especially among patients previously failing aripiprazole augmentation (FAA). Methods: A synthetic dataset (n = 500), based on real-world data, comprised FAA (n = 150) and aripiprazole-untreated (UAA, n = 350) groups. Four ML algorithms (Random Forest, Gradient Boosting, Logistic Regression, SVM) predicted treatment response. Model accuracy, ROC curves, calibration, feature importance (via SHAP), and patient clustering (k-means) were evaluated. Results: Response rates were higher in UAA (76.9%) versus FAA (66.2%). SVM had the highest accuracy (73.3%), while Logistic Regression showed the best discrimination (ROC AUC = 0.612) and calibration. Key predictors included baseline depression severity, episode duration, pramipexole dosage, and patient age, with significant age-dose interactions. Clustering revealed younger FAA patients with prolonged depressive episodes as a high-risk subgroup with notably lower remission rates (49%). Conclusions: ML analysis highlights baseline depression severity, age, episode duration, and pramipexole dosage as crucial predictors of PA response. Younger FAA patients with extended depressive episodes represent a high-risk subgroup needing tailored therapeutic strategies, reinforcing precision psychiatry for managing complex TRD cases.

Cite this paper

Filippis, R. D. and Foysal, A. A. (2025). Machine Learning Analysis of Pramipexole Augmentation in Treatment-Resistant Depression: Identifying Predictors of Response. Open Access Library Journal, 12, e3515. doi: http://dx.doi.org/10.4236/oalib.1113515.

References

[1]  Voineskos, D., Daskalakis, Z.J. and Blumberger, D.M. (2020) Management of Treatment-Resistant Depression: Challenges and Strategies. Neuropsychiatric Disease and Treatment, 16, 221-234. https://doi.org/10.2147/ndt.s198774
[2]  Pandarakalam, J.P. (2018) Challenges of Treatment-Resistant Depression. Psychiatria Danubina, 30, 273-284. https://doi.org/10.24869/psyd.2018.273
[3]  Lenze, E.J., Mulsant, B.H., Blumberg-er, D.M., Karp, J.F., Newcomer, J.W., Anderson, S.J., et al. (2015) Efficacy, Safety, and Tolerability of Augmentation Phar-macotherapy with Aripiprazole for Treatment-Resistant Depression in Late Life: A Randomised, Double-Blind, Place-bo-Controlled Trial. The Lancet, 386, 2404-2412. https://doi.org/10.1016/s0140-6736(15)00308-6
[4]  Caldiroli, A., Capuzzi, E., Tagliabue, I., Capellazzi, M., Marcatili, M., Mucci, F., et al. (2021) Augmentative Pharmacological Strategies in Treatment-Resistant Major Depression: A Comprehensive Review. International Journal of Molecular Sciences, 22, Article 13070. https://doi.org/10.3390/ijms222313070
[5]  Nuñez, N.A., Joseph, B., Pahwa, M., Kumar, R., Resendez, M.G., Prokop, L.J., et al. (2022) Augmentation Strategies for Treatment Resistant Major Depression: A Systematic Review and Network Meta-Analysis. Journal of Affective Disorders, 302, 385-400. https://doi.org/10.1016/j.jad.2021.12.134
[6]  Shad, M.U. (2023) Seventy Years of Antipsychotic Development: A Criti-cal Review. Biomedicines, 11, Article 130. https://doi.org/10.3390/biomedicines11010130
[7]  Connolly, K.R. and Thase, M.E. (2011) If at First You Don't Succeed. Drugs, 71, 43-64. https://doi.org/10.2165/11587620-000000000-00000
[8]  Chow, N., Gallo, L. and Busse, J.W. (2018) Evidence-Based Medicine and Precision Medicine: Complementary Approaches to Clinical Decision-Making. Precision Clinical Medicine, 1, 60-64. https://doi.org/10.1093/pcmedi/pby009
[9]  Kent, D.M., Steyerberg, E. and van Klaveren, D. (2018) Personal-ized Evidence Based Medicine: Predictive Approaches to Heterogeneous Treatment Effects. BMJ, 363, k4245. https://doi.org/10.1136/bmj.k4245
[10]  Lesko, L. and Atkinson, A. (2001) Use of Biomarkers and Surrogate Endpoints in Drug Development and Regulatory Decision Making: Criteria, Validation, Strategies. Annual Review of Pharmacology and Toxicology, 41, 347-366. https://doi.org/10.1146/annurev.pharmtox.41.1.347
[11]  Muth, C., Blom, J.W., Smith, S.M., Johnell, K., Gonzalez‐Gonzalez, A.I., Nguyen, T.S., et al. (2018) Evidence Supporting the Best Clinical Management of Pa-tients with Multimorbidity and Polypharmacy: A Systematic Guideline Review and Expert Consensus. Journal of Internal Medicine, 285, 272-288. https://doi.org/10.1111/joim.12842
[12]  Gemignani, F., Brindani, and Vitetta F, (2009) Rest-less Legs Syndrome: Differential Diagnosis and Management with Pramipexole. Clinical Interventions in Aging, 4, 305-313. https://doi.org/10.2147/cia.s4143
[13]  Tundo, A., Betro’, S., Iommi, M. and de Filippis, R. (2022) Efficacy and Safety of 24-Week Pramipexole Augmentation in Patients with Treatment Resistant Depression. a Retrospective Cohort Study. Pro-gress in Neuro-Psychopharmacology and Biological Psychiatry, 112, Article 110425. https://doi.org/10.1016/j.pnpbp.2021.110425
[14]  Tundo, A., de Filippis, R., Felici, R., Lucangeli, C. and Iommi, M. (2025) Pramipexole Augmentation for Treatment-Resistant Unipolar Depression Not Responding to Aripiprazole Augmen-tation: An Observational Study. Journal of Clinical Psychopharmacology, 45, 236-242. https://doi.org/10.1097/JCP.0000000000001986
[15]  Szabadi, E. (2024) Three Paradoxes Related to the Mode of Ac-tion of Pramipexole: The Path from D2/D3 Dopamine Receptor Stimulation to Modification of Dopamine-Modulated Func-tions. Journal of Psychopharmacology, 38, 581-596. https://doi.org/10.1177/02698811241261022
[16]  Whitton, A.E., Reinen, J.M., Slifstein, M., Ang, Y., McGrath, P.J., Iosifescu, D.V., et al. (2020) Baseline Reward Processing and Ventrostriatal Dopamine Function Are Associated with Pramipexole Response in Depression. Brain, 143, 701-710. https://doi.org/10.1093/brain/awaa002
[17]  Ferraiolo, M. and Hermans, E. (2023) The Complex Molecular Pharmacolo-gy of the Dopamine D2 Receptor: Implications for Pramipexole, Ropinirole, and Rotigotine. Pharmacology & Therapeutics, 245, Article 108392. https://doi.org/10.1016/j.pharmthera.2023.108392
[18]  Cortés, A., Moreno, E., Rodríguez-Ruiz, M., Canela, E.I. and Casadó, V. (2016) Targeting the Dopamine D3 Receptor: An Overview of Drug Design Strategies. Expert Opinion on Drug Discovery, 11, 641-664. https://doi.org/10.1080/17460441.2016.1185413
[19]  Kvernmo, T., Houben, J. and Sylte, I. (2008) Receptor-Binding and Pharmacokinetic Properties of Dopaminergic Agonists. Current Topics in Me-dicinal Chemistry, 8, 1049-1067. https://doi.org/10.2174/156802608785161457
[20]  Pacher, P. and Kecskemeti, V. (2004) Trends in the Development of New Antidepressants. Is There a Light at the End of the Tunnel? Current Medicinal Chemistry, 11, 925-943. https://doi.org/10.2174/0929867043455594
[21]  Dragonieri, S., Portacci, A., Quaranta, V.N. and Carpagnano, G.E. (2024) Advancing Care in Severe Asthma: The Art of Switching Biologics. Advances in Respiratory Medicine, 92, 110-122. https://doi.org/10.3390/arm92020014
[22]  Karam, S., Gebreil, A., Alksas, A., Balaha, H.M., Kha-lil, A., Ghazal, M., et al. (2024) Insights into Personalized Care Strategies for Wilms Tumor: A Narrative Literature Review. Biomedicines, 12, Article 1455. https://doi.org/10.3390/biomedicines12071455
[23]  Mabrouk, O.M., Hady, D.A.A. and Abd El-Hafeez, T. (2024) Machine Learning Insights into Scapular Stabilization for Alleviating Shoulder Pain in College Stu-dents. Scientific Reports, 14, Article No. 28430. https://doi.org/10.1038/s41598-024-79191-8
[24]  Alizadehsani, R., Roshanzamir, M., Hussain, S., Khosravi, A., Koohestani, A., Zangooei, M.H., et al. (2024) Handling of Uncertainty in Medical Data Using Machine Learning and Probability Theory Techniques: A Review of 30 Years (1991-2020). Annals of Operations Research, 339, 1077-1118. https://doi.org/10.1007/s10479-021-04006-2
[25]  Orphanidou, C. and Wong, D. (2017) Machine Learning Models for Multidimensional Clinical Data. In: Khan, S., Zomaya, A. and Abbas, A. Eds., Scalable Compu-ting and Communications, Springer International Publishing, 177-216. https://doi.org/10.1007/978-3-319-58280-1_8
[26]  Adlung, L., Cohen, Y., Mor, U. and Elinav, E. (2021) Machine Learn-ing in Clinical Decision Making. Med, 2, 642-665. https://doi.org/10.1016/j.medj.2021.04.006
[27]  Shehab, M., Abu-aligah, L., Shambour, Q., Abu-Hashem, M.A., Shambour, M.K.Y., Alsalibi, A.I., et al. (2022) Machine Learning in Medical Applications: A Review of State-of-the-Art Methods. Computers in Biology and Medicine, 145, Article 105458. https://doi.org/10.1016/j.compbiomed.2022.105458
[28]  Houssein, E.H., Hosney, M.E., Emam, M.M., Younis, E.M.G., Ali, A.A. and Mohamed, W.M. (2023) Soft Computing Techniques for Biomedical Data Analysis: Open Issues and Challenges. Artificial Intelligence Review, 56, 2599-2649. https://doi.org/10.1007/s10462-023-10585-2
[29]  Ahmad, T., Lund, L.H., Rao, P., Ghosh, R., Warier, P., Vaccaro, B., et al. (2018) Machine Learning Methods Improve Prognostication, Identify Clini-cally Distinct Phenotypes, and Detect Heterogeneity in Response to Therapy in a Large Cohort of Heart Failure Patients. Journal of the American Heart Association, 7, e008081. https://doi.org/10.1161/jaha.117.008081
[30]  Gordon, A.C., Alipanah-Lechner, N., Bos, L.D., Dianti, J., Diaz, J.V., Finfer, S., et al. (2024) From ICU Syndromes to ICU Subphenotypes: Consensus Report and Recommendations for Developing Precision Medicine in the ICU. American Journal of Respiratory and Critical Care Medicine, 210, 155-166. https://doi.org/10.1164/rccm.202311-2086so
[31]  Oxman, A.D. and Guyatt, G.H. (1992) A Consumer’s Guide to Subgroup Analyses. Annals of Internal Medicine, 116, 78-84. https://doi.org/10.7326/0003-4819-116-1-78
[32]  Barsevick, A.M. (2007) The Elusive Concept of the Symptom Cluster. Oncology Nursing Forum, 34, 971-980. https://doi.org/10.1188/07.onf.971-980
[33]  Pamulaparthyvenkata, S., Reddy, S.G. and Singh, S. (2023) Leveraging Technological Advancements to Optimize Healthcare Delivery: A Comprehensive Anal-ysis of Value-Based Care, Patient-Centered Engagement, and Personalized Medicine Strategies. Journal of AI-Assisted Scien-tific Discovery, 3, 371-378.
[34]  Adeghe, E.P., Okolo, C.A. and Ojeyinka, O.T. (2024) The Role of Big Data in Healthcare: A Review of Implications for Patient Outcomes and Treatment Personalization. World Journal of Biology Pharmacy and Health Sciences, 17, 198-204. https://doi.org/10.30574/wjbphs.2024.17.3.0133
[35]  Anuyah, Sydney, Singh, M.K. and Nyavor, H. (2024) Advancing Clinical Trial Out-Comes Using Deep Learning and Predictive Modelling: Bridging Precision Medicine and Patient-Centered Care. arXiv:2412.07050.
[36]  Thoppil, I.J., Ashtalakshmi, K. and Chundi, R. (2025) Transforming Healthcare. In: Sharma, M., Sharma, D.K., Agarwal, D. and Harthy, K.A., Eds., Bioinformatics and Beyond, CRC Press, 92-114. https://doi.org/10.1201/9781003508403-5
[37]  Sahin, E.K. (2020) Assessing the Predictive Capability of En-semble Tree Methods for Landslide Susceptibility Mapping Using XGBoost, Gradient Boosting Machine, and Random Forest. SN Applied Sciences, 2, Article No. 1308. https://doi.org/10.1007/s42452-020-3060-1
[38]  Nawar, S. and Mouazen, A. (2017) Comparison between Random Forests, Artificial Neural Networks and Gradient Boosted Machines Methods of On-Line Vis-NIR Spectroscopy Measurements of Soil Total Nitrogen and Total Carbon. Sensors, 17, Article 2428. https://doi.org/10.3390/s17102428
[39]  Jafarzadeh, H., Mahdianpari, M., Gill, E., Mohammadimanesh, F. and Homay-ouni, S. (2021) Bagging and Boosting Ensemble Classifiers for Classification of Multispectral, Hyperspectral and PoLSAR Data: A Comparative Evaluation. Remote Sensing, 13, Article 4405. https://doi.org/10.3390/rs13214405
[40]  Gaye, B. and Wulamu, A. (2019) Sentiment Analysis of Text Classification Algorithms Using Confusion Matrix. In: Ning, H., Ed., Communications in Computer and Information Science, Springer Singapore, 231-241. https://doi.org/10.1007/978-981-15-1922-2_16
[41]  Obi, J.C. (2023) A Comparative Study of Several Classification Met-rics and Their Performances on Data. World Journal of Advanced Engineering Technology and Sciences, 8, 308-314. https://doi.org/10.30574/wjaets.2023.8.1.0054
[42]  Laatifi, M., Douzi, S., Ezzine, H., Asry, C.E., Naya, A., Bouklouze, A., et al. (2023) Explanatory Predictive Model for COVID-19 Severity Risk Employing Machine Learning, Shapley Addition, and Lime. Scientific Reports, 13, Article No. 5481. https://doi.org/10.1038/s41598-023-31542-7
[43]  Miao, K., Houssou Hounye, A., Su, L., Pan, Q., Wang, J., Hou, M., et al. (2024) Exploring Explainable Machine Learning and Shapley Additive Explanations (SHAP) Technique to Uncover Key Factors of HNSC Cancer: An Analysis of the Best Practices. Biomedical Signal Processing and Control, 89, Article 105752. https://doi.org/10.1016/j.bspc.2023.105752
[44]  Upadhyaya, D.P., Tara-bichi, Y., Prantzalos, K., Ayub, S., Kaelber, D.C. and Sahoo, S.S. (2024) Machine Learning Interpretability Methods to Char-acterize the Importance of Hematologic Biomarkers in Prognosticating Patients with Suspected Infection. Computers in Biol-ogy and Medicine, 183, Article 109251. https://doi.org/10.1016/j.compbiomed.2024.109251
[45]  Raptis, S., Ilioudis, C. and Theodorou, K. (2024) From Pixels to Prognosis: Unveiling Radiomics Models with SHAP and LIME for Enhanced Inter-pretability. Biomedical Physics & Engineering Express, 10, Article 035016. https://doi.org/10.1088/2057-1976/ad34db
[46]  Grzenda, A., Speier, W., Siddarth, P., Pant, A., Krause-Sorio, B., Narr, K., et al. (2021) Machine Learning Prediction of Treatment Outcome in Late-Life Depression. Frontiers in Psychiatry, 12, Article 738494. https://doi.org/10.3389/fpsyt.2021.738494
[47]  Park, J., Kim, J., Ryu, D. and Choi, H. (2023) Factors Related to Steroid Treatment Responsiveness in Thyroid Eye Disease Patients and Application of SHAP for Feature Analysis with XGBoost. Frontiers in Endocrinology, 14, Article 1079628. https://doi.org/10.3389/fendo.2023.1079628
[48]  Shalimova, A., Babasieva, V., Chubarev, V.N., Tarasov, V.V., Schiöth, H.B. and Mwinyi, J. (2021) Therapy Response Prediction in Major Depressive Disorder: Current and Novel Genomic Markers Influencing Pharmacokinetics and Pharmacodynamics. Pharmacogenomics, 22, 485-503. https://doi.org/10.2217/pgs-2020-0157
[49]  Stocchi, F., Bravi, D., Emmi, A. and Antonini, A. (2024) Parkinson Disease Therapy: Current Strategies and Future Research Priorities. Nature Reviews Neurology, 20, 695-707. https://doi.org/10.1038/s41582-024-01034-x
[50]  Blackburn, T.P. (2019) Depressive Disorders: Treatment Failures and Poor Prognosis over the Last 50 Years. Pharmacology Research & Perspectives, 7, e00472. https://doi.org/10.1002/prp2.472
[51]  Vaughn, D.A., Marino, B., Engelbertson, A., Dojnov, A., Weiss, N., Vila-Rodriguez, F., Nanos, G. and Downar, J. (2024) Real-World Effectiveness of A single-Day Regimen for Transcranial Magnetic Stimulation Using Optimized, Neuroplastogen-Enhanced Techniques in Depression (ONE-D). https://doi.org/10.21203/rs.3.rs-5679327/v1
[52]  Zanetti, M.V., Loch, A. and Machado-Vieira, R. (2015) Translating Biomarkers and Biomolecular Treatments to Clinical Practice. In: Yildiz, A., Ruiz, P. and Nemeroff, C., Eds., The Bipolar Book, Oxford University Press, 149-168. https://doi.org/10.1093/med/9780199300532.003.0013
[53]  Fabbri, C. (2025) Treatment-Resistant Depression: Role of Genetic Factors in the Perspective of Clinical Stratification and Treatment Personal-isation. Molecular Psychia-try, 30, 2210-2218.
[54]  Prompiengchai, S. and Dunlop, K. (2024) Breakthroughs and Chal-lenges for Generating Brain Network-Based Biomarkers of Treatment Response in Depression. Neuropsychopharmacology, 50, 230-245. https://doi.org/10.1038/s41386-024-01907-1
[55]  Sforzini, L., Worrell, C., Kose, M., Anderson, I.M., Aouizerate, B., Arolt, V., et al. (2021) A Delphi-Method-Based Consensus Guideline for Definition of Treatment-Resistant Depression for Clinical Trials. Molecular Psychiatry, 27, 1286-1299. https://doi.org/10.1038/s41380-021-01381-x
[56]  Cook, N., Hansen, A.R., Siu, L.L. and Abdul Razak, A.R. (2014) Early Phase Clinical Trials to Identify Optimal Dosing and Safety. Molecular Oncology, 9, 997-1007. https://doi.org/10.1016/j.molonc.2014.07.025
[57]  Poweleit, E.A., Vinks, A.A. and Mizuno, T. (2023) Artificial Intelli-gence and Machine Learning Approaches to Facilitate Therapeutic Drug Management and Model-Informed Precision Dos-ing. Therapeutic Drug Monitoring, 45, 143-150. https://doi.org/10.1097/ftd.0000000000001078
[58]  Tyson, R.J., Park, C.C., Powell, J.R., Patterson, J.H., Weiner, D., Watkins, P.B., et al. (2020) Precision Dosing Priority Criteria: Drug, Disease, and Patient Population Variables. Frontiers in Pharmacology, 11, Article 420. https://doi.org/10.3389/fphar.2020.00420
[59]  Maristany, A.J., Sa, B.C., Murray, C., Subramaniam, A.B. and Oldak, S.E. (2024) Psychiatric Manifestations of Neurological Diseases: A Narrative Review. Cureus, 16, e64152. https://doi.org/10.7759/cureus.64152
[60]  Bernatoniene, J., Plieskis, M. and Petrikonis, K. (2025) Pharmaceutical 3D Printing Technology Integrating Nanomaterials and Nanodevices for Precision Neurological Therapies. Pharmaceutics, 17, Article 352. https://doi.org/10.3390/pharmaceutics17030352
[61]  Olanow, C.W., Watts, R.L. and Koller, W.C. (2001) An Algorithm (Decision Tree) for the Management of Parkinson’s Disease (2001): Treatment Guidelines. Neurology, 56, S1-S88. https://doi.org/10.1212/wnl.56.suppl_5.s1
[62]  Shi, H., Zhang, M., Mujumdar, A.S. and Li, C. (2024) Potential of 3D Printing in Development of Foods for Special Medical Purpose: A Review. Comprehensive Reviews in Food Science and Food Safety, 23, e70005. https://doi.org/10.1111/1541-4337.70005
[63]  Brown, L.C., Mueller, D.J., Eyre, H.A., Bous-man, C. and Greden, J.F. (2022) Tools to Aid Precision Treatments to Prevent or Manage Treatment-Resistant Depression (TRD): Pharmacogenomics, Machine Learning, and Artificial Intelligence. In: Quevedo, J., Riva-Posse, P. and Bobo, W.V., Eds., Managing Treatment-Resistant Depression, Academic Press, 99-105.
[64]  Marano, G., Rossi, S., Sfratta, G., Traversi, G., Lisci, F.M., Anesini, M.B., et al. (2025) Gut Microbiota: A New Challenge in Mood Disorder Research. Life, 15, Article 593. https://doi.org/10.3390/life15040593

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133