The absence of the atp8 gene in the mitochondrial genomes of Platyhelminthes and certain other mollusks has garnered significant attention in recent years. Growing evidence suggests that this gene loss may be associated with the high divergence and length variability of atp8, making it particularly challenging for automated annotation. Analysis of putative atp8 genes in the families Dugesiidae and Dendrocoelidae (superfamily Geoplanoidea) revealed substantial differences in gene structure and hydrophobic patterns of amino acid sequences. These variations may result from divergent selective pressures on atp8, driven by distinct ecological niches and survival strategies. This superfamily warrants further in-depth investigation. Phylogenetic tree reconstruction of sampled specimens indicated that Dugesia japonica forms a sister clade to the studied population, albeit with distant genetic relatedness, suggesting the latter may represent a cryptic species within Dendrocoelidae. These findings contribute to expanding and refining the genetic database of Dendrocoelidae.
Cite this paper
Feng, Y. and Sun, H. (2025). Analysis of the atp8 Gene and Discovery of a Cryptic Species in Geoplanoidea. Open Access Library Journal, 12, e3399. doi: http://dx.doi.org/10.4236/oalib.1113399.
Shimada, D., Kakui, K. and Fujita, Y. (2023) A New Species of Free-Living Marine Nematode, Fotolaimus cavus sp. nov. (Nematoda, Oncholaimida, Oncholaimidae), Isolated from a Submarine Anchialine Cave in the Ryukyu Islands, Southwestern Japan. Zoosystemat-ics and Evolution, 99, 519-533. https://doi.org/10.3897/zse.99.109097
Cheng, X., Jin, D., Duan, L., Xu, W. and Pan, H. (2021) The Complete Mitochondrial Genome of a Planarian Flatworm Girardia tigrina (Tricladida: Dugesiidae). Mitochondrial DNA Part B, 6, 2615-2616. https://doi.org/10.1080/23802359.2021.1962757
Egger, B., Bachmann, L. and Fromm, B. (2017) Atp8 Is in the Ground Pattern of Flatworm Mitochondrial Genomes. BMC Genomics, 18, Article No. 414. https://doi.org/10.1186/s12864-017-3807-2
Vinothkumar, K.R., Montgomery, M.G., Liu, S. and Walker, J.E. (2016) Structure of the Mitochondrial ATP Synthase from Pichia angusta Determined by Electron Cryo-microscopy. Proceedings of the National Academy of Sciences, 113, 12709-12714. https://doi.org/10.1073/pnas.1615902113
Zhao, B., Gao, S., Zhao, M., Lv, H., Song, J., Wang, H., et al. (2022) Mitochondrial Genomic Analyses Provide New Insights into the “Missing” Atp8 and Adaptive Evolution of Mytilidae. BMC Genomics, 23, Article No. 738. https://doi.org/10.1186/s12864-022-08940-8
Leria, L., Vila-Farré, M., álvarez-Presas, M., Sánchez-Gracia, A., Rozas, J., Sluys, R., et al. (2020) Cryptic Species Delineation in Freshwater Planarians of the Genus Dugesia (Platyhelminthes, Tricladida): Extreme Intraindividual Genetic Diversity, Morphological Stasis, and Karyological Variability. Molecular Phylogenetics and Evolution, 143, Article 106496. https://doi.org/10.1016/j.ympev.2019.05.010
Araujo, A.P.G., Carbayo, F., Riutort, M. and álvarez-Presas, M. (2020) Five New Pseudocryptic Land Planarian Species of Cratera (Platyhelminthes: Tricladida) Unveiled through Integrative Taxonomy. PeerJ, 8, e9726. https://doi.org/10.7717/peerj.9726
Stocchino, G.A., Dols-Serrate, D., Sluys, R., Riutort, M., Onnis, C. and Manconi, R. (2021) Amphibioplanidae: A New Branch and Family on the Phylogenetic Tree of the Triclad Flatworms (Platyhelminthes: Tricladida), Represented by a Species from Sardinian Caves with a Remarkable Lifestyle. Zoo-logical Journal of the Linnean Society, 193, 1364-1391. https://doi.org/10.1093/zoolinnean/zlaa183
Duncan, E.M., Nowotarski, S.H., Guerrero-Hernández, C., et al. (2020) A New Species of Planarian Flatworm from Mexico: Girardia guanajuatiensis. Preprint. https://doi.org/10.1101/2020.07.01.183442
Wang, L., Dong, Z.M., Chen, G.W., et al. (2021) Commonly Used Molecular Mark-ers and Research Progress in Tricladida. Journal of Henan Normal University (Natural Science Edition), 49, 78-84.
Bernt, M., Donath, A., Jühling, F., Externbrink, F., Florentz, C., Fritzsch, G., et al. (2013) MITOS: Improved de novo Metazoan Mitochondrial Genome Annotation. Molecular Phyloge-netics and Evolution, 69, 313-319. https://doi.org/10.1016/j.ympev.2012.08.023
Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874. https://doi.org/10.1093/molbev/msw054
Perna, N.T. and Kocher, T.D. (1995) Patterns of Nucleotide Composition at Fourfold Degenerate Sites of Animal Mitochondrial Genomes. Journal of Molecular Evolution, 41, 353-358. https://doi.org/10.1007/bf01215182
Telford, M.J., Herniou, E.A., Russell, R.B. and Littlewood, D.T.J. (2000) Changes in Mito-chondrial Genetic Codes as Phylogenetic Characters: Two Examples from the Flatworms. Proceedings of the National Academy of Sci-ences, 97, 11359-11364. https://doi.org/10.1073/pnas.97.21.11359
Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioan-nidis, V. and Durinx, C. (2021) Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Research, 49, W216-W227. https://doi.org/10.1093/nar/gkab225
Letunic, I., Khedkar, S. and Bork, P. (2020) SMART: Recent Updates, New Developments and Status in 2020. Nucleic Acids Research, 49, D458-D460. https://doi.org/10.1093/nar/gkaa937
Xia, X. (2001) DAMBE: Software Package for Data Analysis in Molecular Biology and Evolution. Journal of Heredity, 92, 371-373. https://doi.org/10.1093/jhered/92.4.371
Castresana, J. (2000) Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis. Molecular Biology and Evolution, 17, 540-552. https://doi.org/10.1093/oxfordjournals.molbev.a026334
Katoh, K. and Standley, D.M. (2013) MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Molecular Biology and Evolution, 30, 772-780. https://doi.org/10.1093/molbev/mst010
Zhang, D., Gao, F., Jakovlić, I., Zou, H., Zhang, J., Li, W.X., et al. (2019) Phylosuite: An Integrated and Scalable Desktop Platform for Streamlined Molecular Sequence Data Management and Evolutionary Phylogenetics Studies. Molecular Ecology Resources, 20, 348-355. https://doi.org/10.1111/1755-0998.13096
Kearse, M., Moir, R., Wilson, A., Stones-Havas, S., Cheung, M., Sturrock, S., et al. (2012) Geneious Basic: An Integrated and Extendable Desktop Software Platform for the Organization and Analysis of Sequence Data. Bioinformatics, 28, 1647-1649. https://doi.org/10.1093/bioinformatics/bts199
Lanfear, R., Calcott, B., Ho, S.Y.W. and Guindon, S. (2012) Partitionfinder: Com-bined Selection of Partitioning Schemes and Substitution Models for Phylogenetic Analyses. Molecular Biology and Evolution, 29, 1695-1701. https://doi.org/10.1093/molbev/mss020
Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., et al. (2012) MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Sys-tematic Biology, 61, 539-542. https://doi.org/10.1093/sysbio/sys029
Stamatakis, A. (2014) RAxML Version 8: A Tool for Phy-logenetic Analysis and Post-Analysis of Large Phylogenies. Bioinformatics, 30, 1312-1313. https://doi.org/10.1093/bioinformatics/btu033
Gissi, C., Iannelli, F. and Pesole, G. (2008) Evolution of the Mitochondrial Genome of Metazoa as Exemplified by Comparison of Congeneric Species. Heredity, 101, 301-320. https://doi.org/10.1038/hdy.2008.62
Shimada, D., Hiruta, S.F., Takahoshi, K. and Kajihara, H. (2023) Does Atp8 Exist in the Mitochondrial Genome of Proseriata (Metazoa: Platyhelminthes)? Animal Gene, 30, Article 200161. https://doi.org/10.1016/j.angen.2023.200161
Williams, H.C., Ormerod, S.J. and Bruford, M.W. (2006) Molecular Systematics and Phylogeography of the Cryptic Species Complex Baetis rhodani (Ephemeroptera, Baetidae). Molecular Phylogenetics and Evolu-tion, 40, 370-382. https://doi.org/10.1016/j.ympev.2006.03.004
Boll, P.K., Lloncón, Y. and Almendras, D. (2023) Records of the Land Planarian Polycladus gayi (Tricladida, Geoplanidae) Preying on Black Snails Macrocyclis peruvianus (Gastropoda, Macrocycli-dae). Austral Ecology, 48, 2239-2245. https://doi.org/10.1111/aec.13430
Boll, P.K., Marques, D. and Leal-Zanchet, A.M. (2020) Mind the Food: Survival, Growth and Fecundity of a Neotropical Land Planarian (Platyhelminthes, Geoplanidae) under Different Diets. Zoology, 138, Article 125722. https://doi.org/10.1016/j.zool.2019.125722
Wang, J., Shi, Y., Elzo, M.A., Dang, S., Jia, X. and Lai, S. (2017) Genetic Diversity of Atp8 and Atp6 Genes Is Associated with High-Altitude Adaptation in Yak. Mitochondrial DNA Part A, 29, 385-393. https://doi.org/10.1080/24701394.2017.1285292