全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Normalized Solutions for a Planar Schr?dinger-Poisson System with Inhomogeneous Attractive Interactions

DOI: 10.4236/oalib.1113315, PP. 1-14

Subject Areas: Partial Differential Equation, Mathematics

Keywords: Schrö,dinger-Poisson System, Logarithmic Convolution, Inhomogeneous Attractive Interaction, Normalized Solution

Full-Text   Cite this paper   Add to My Lib

Abstract

This paper is devoted to the normalized solutions of a planar L2-critical Schrödinger-Poisson system with an external potential V(x) =❘X❘2 and in-homogeneous attractive interactions K(x)∈(0,1). Applying the constraint variational method, we prove that the normalized solutions exist if and only if the interaction strength a satisfies a∈(0,a*):=∥Q∥2L2(R2), where Q is the unique positive solution of Δu-u u3=0 in R2. Particularly, the re-fined limiting behavior of positive minimizers is also analyzed as a¤a*.

Cite this paper

Xue, Q. (2025). Normalized Solutions for a Planar Schr?dinger-Poisson System with Inhomogeneous Attractive Interactions. Open Access Library Journal, 12, e3315. doi: http://dx.doi.org/10.4236/oalib.1113315.

References

[1]  Benci, V. and Fortunato, D. (1998) An Eigenvalue Problem for the Schrödinger-Maxwell Equations. Topological Methods in Nonlinear Analysis, 11, 283-293. https://doi.org/10.12775/tmna.1998.019
[2]  D’Aprile, T. and Mugnai, D. (2004) Sol-itary Waves for Nonlinear Klein-Gordon-Maxwell and Schrödinger-Maxwell Equations. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 134, 893-906. https://doi.org/10.1017/s030821050000353x
[3]  Ruiz, D. (2005) Semiclassical States for Coupled Schrödinger-Maxwell Equations: Concentration around a Sphere. Mathematical Models and Methods in Applied Sciences, 15, 141-164. https://doi.org/10.1142/s0218202505003939
[4]  Arnold, A. (1996) Self-Consistent Relaxation-Time Models in Quantum Mechanics. Communications in Partial Differential Equations, 21, 473-506. https://doi.org/10.1080/03605309608821193
[5]  Benci, V. and Fortunato, D.F. (2002) Solitary Waves of the Nonlinear Klein-Gordon Equation Coupled with the Maxwell Equations. Reviews in Mathematical Physics, 14, 409-420. https://doi.org/10.1142/s0129055x02001168
[6]  Bokanowski, O., López, J.L. and Soler, J. (2003) On an Exchange In-teraction Model for Quantum Transport: The Schrödinger-Poisson-Slater System. Mathematical Models and Methods in Ap-plied Sciences, 13, 1397-1412. https://doi.org/10.1142/s0218202503002969
[7]  Garnier, J., Baudin, K., Fusaro, A. and Picozzi, A. (2021) Incoherent Localized Structures and Hidden Coherent Solitons from the Gravitational Instability of the Schrödinger-Poisson Equation. Physical Review E, 104, Article ID: 054205. https://doi.org/10.1103/physreve.104.054205
[8]  Benguria, R., Brezis, H. and Lieb, E.H. (1981) The Thomas-Fermi-Von Weizsäcker Theory of Atoms and Molecules. Communications in Mathematical Physics, 79, 167-180. https://doi.org/10.1007/bf01942059
[9]  Lions, P.L. (1987) Solutions of Hartree-Fock Equations for Coulomb Systems. Communications in Mathematical Physics, 109, 33-97. https://doi.org/10.1007/bf01205672
[10]  Catto, I., Dolbeault, J., Sánchez, O. and Soler, J. (2013) Existence of Steady States for the Maxwell-Schrödinger-Poisson System: Exploring the Ap-plicability of the Concentration-Compactness Principle. Mathematical Models and Methods in Applied Sciences, 23, 1915-1938. https://doi.org/10.1142/s0218202513500541
[11]  Sánchez, ó. and Soler, J. (2004) Long-Time Dynamics of the Schrödinger-Poisson-Slater System. Journal of Statistical Physics, 114, 179-204. https://doi.org/10.1023/b:joss.0000003109.97208.53
[12]  Bartsch, T., Qi, S. and Zou, W. (2024) Normalized Solutions to Schrödinger Equations with Potential and Inhomogeneous Nonlinearities on Large Smooth Domains. Mathematische An-nalen, 390, 4813-4859. https://doi.org/10.1007/s00208-024-02857-1
[13]  Deng, Y., Guo, Y. and Lu, L. (2014) On the Collapse and Concentration of Bose-Einstein Condensates with Inhomogeneous Attractive Interactions. Calculus of Varia-tions and Partial Differential Equations, 54, 99-118. https://doi.org/10.1007/s00526-014-0779-9
[14]  Deng, Y., Guo, Y. and Lu, L. (2018) Threshold Behavior and Uniqueness of Ground States for Mass Critical Inhomogeneous Schrödinger Equations. Journal of Mathematical Physics, 59, Article ID: 011503. https://doi.org/10.1063/1.5008924
[15]  Shu, M. and Wen, L. (2024) Normalized Solutions for Planar Schrödinger-Poisson System with a Positive Potential. Discrete and Contin-uous Dynamical Systems—S, 17, 3420-3435. https://doi.org/10.3934/dcdss.2024074
[16]  Guo, Y., Liang, W. and Li, Y. (2023) Existence and Uniqueness of Constraint Minimizers for the Planar Schrödinger-Poisson System with Logarithmic Potentials. Journal of Differential Equations, 369, 299-352. https://doi.org/10.1016/j.jde.2023.06.007
[17]  Wang, C. and Zhang, S. (2025) Uniqueness of Minimizers for the Mass Subcritical Planar Schrödinger-Poisson System with Logarith-mic Convolution Potential. Discrete and Continuous Dynamical Systems, 45, 794-820. https://doi.org/10.3934/dcds.2024113
[18]  Xu, Y. and Luo, H. (2024) Normalized Solutions for Nonautonomous Schrödinger-Poisson Equations. Zeitschrift für angewandte Mathematik und Physik, 75, Article No. 86. https://doi.org/10.1007/s00033-024-02201-2
[19]  Zhang, J. (2000) Stability of Standing Waves for Nonlinear Schrödinger Equations with Unbounded Potentials. Zeitschrift für angewandte Mathematik und Physik, 51, 498-503. https://doi.org/10.1007/pl00001512
[20]  Cingolani, S. and Weth, T. (2016) On the Planar Schrödinger-Poisson System. Annales de l’Institut Henri Poincaré C, Analyse non linéaire, 33, 169-197. https://doi.org/10.1016/j.anihpc.2014.09.008
[21]  Lieb, E.H. and Loss, M. (2001) Analysis, Second Edition.
[22]  Guo, Y., Luo, Y. and Peng, S. (2021) Local Uniqueness of Ground States for Rotating Bose-Einstein Condensates with Attractive In-teractions. Calculus of Variations and Partial Differential Equations, 60, Article No. 237. https://doi.org/10.1007/s00526-021-02055-w
[23]  Gidas, B., Ni, W.M. and Nirenberg, L. (1981) Symmetry of Positive Solutions of Nonlinear Elliptic Equations in  . Mathematical Analysis and Applications Part A. Advances in Mathematics Supplementary Studies, 7, 369-402.
[24]  Weinstein, M.I. (1983) Nonlinear Schrödinger Equations and Sharp Interpola-tion Estimates. Communications in Mathematical Physics, 87, 567-576. https://doi.org/10.1007/bf01208265
[25]  Han, Q. and Lin, F.H. (2011) Elliptic Partial Differential Equations. Courant Lecture Notes in Mathematics, 1.
[26]  Willem, M. and Theorems, M. (1996) Progress in Nonlinear Differential Equations and Their Applications. Birkhäuser Boston, Inc.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133