全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Optimization of Leach Parameters to Improve Energy Efficiency of Wireless Sensor Networks

DOI: 10.4236/oalib.1113258, PP. 1-19

Subject Areas: Computer Engineering, Technology

Keywords: Optimization, LEACH, Parameters, Energy Efficiency, Wireless Sensor Networks

Full-Text   Cite this paper   Add to My Lib

Abstract

This article introduces a study on optimizing LEACH parameters to improve the efficiency of wireless sensor networks. The focus of the research is to find the optimal algorithm configuration parameter to maximize the performance and prolong the lifetime of wireless sensor batteries. This study aims to improve the overall energy efficiency of wireless sensor networks by adjusting the LEACH parameters. The results will contribute to the development of more sustainable and energy-efficient wireless sensor networks.

Cite this paper

Adela, S. R. and Wu, M. (2025). Optimization of Leach Parameters to Improve Energy Efficiency of Wireless Sensor Networks. Open Access Library Journal, 12, e3258. doi: http://dx.doi.org/10.4236/oalib.1113258.

References

[1]  Abdulkarem, M., Samsudin, K., Rokhani, F.Z. and A Rasid, M.F. (2019) Wireless Sensor Network for Structural Health Monitoring: A Contemporary Review of Technologies, Challenges, and Future Direction. Structural Health Monitoring, 19, 693-735. https://doi.org/10.1177/1475921719854528
[2]  Cui, Y., Zhang, L., Hou, Y. and Tian, G. (2021) Design of Intelligent Home Pension Ser-vice Platform Based on Machine Learning and Wireless Sensor Network. Journal of Intelligent & Fuzzy Systems, 40, 2529-2540. https://doi.org/10.3233/jifs-189246
[3]  Mittal, M., de Prado, R.P., Kawai, Y., Nakajima, S. and Muñoz-Expósito, J.E. (2021) Machine Learning Techniques for Energy Efficiency and Anomaly Detection in Hybrid Wireless Sensor Networks. Energies, 14, Article 3125. https://doi.org/10.3390/en14113125
[4]  Ramesh, S., Rajalakshmi, R., Dwivedi, J.N., Selvakanmani, S., Pant, B., Bharath Kumar, N., et al. (2022) Op-timization of Leach Protocol in Wireless Sensor Network Using Machine Learn-ing. Computational Intelligence and Neuroscience, 2022, Article ID: 5393251. https://doi.org/10.1155/2022/5393251
[5]  Yarinezhad, R. (2019) Reduc-ing Delay and Prolonging the Lifetime of Wireless Sensor Network Using Effi-cient Routing Protocol Based on Mobile Sink and Virtual Infrastructure. Ad Hoc Networks, 84, 42-55. https://doi.org/10.1016/j.adhoc.2018.09.016
[6]  Liu, Y., Wu, Q., Zhao, T., Tie, Y., Bai, F. and Jin, M. (2019) An Improved Ener-gy-Efficient Routing Protocol for Wireless Sensor Networks. Sensors, 19, Article 4579. https://doi.org/10.3390/s19204579
[7]  Zhang, Y., Li, P. and Mao, L. (2018) Research on Improved Low-Energy Adaptive Clustering Hierarchy Pro-tocol in Wireless Sensor Networks. Journal of Shanghai Jiaotong University (Sci-ence), 23, 613-619. https://doi.org/10.1007/s12204-018-1991-0
[8]  Liang, H., Yang, S., Li, L. and Gao, J. (2019) Research on Routing Optimization of WSNs Based on Im-proved LEACH Protocol. EURASIP Journal on Wireless Communications and Networking, 2019, Article No. 194. https://doi.org/10.1186/s13638-019-1509-y
[9]  Heinzelman, W.R., Chan-drakasan, A. and Balakrishnan, H. (2000) Energy-Efficient Communication Protocol for Wireless Microsensor Networks. Proceedings of the 33rd Annual Hawaii International Conference on System Sciences, Maui, 7 January 2000, 10. https://doi.org/10.1109/hicss.2000.926982
[10]  Sundararajan, R.K. and Arumugam, U. (2018) Event Detection and Information Passing Using LEACH Protocol in Wireless Sensor Networks. Wireless Personal Communications, 101, 1703-1714. https://doi.org/10.1007/s11277-018-5785-3
[11]  Pithva, B., Pattani, K. and Christian, A. (2014) Optimization of Leach Protocol in Wireless Sensor Network. International Journal of Computer Applications, 93, 26-30. https://doi.org/10.5120/16268-5998
[12]  Dolen, V., Bahk, K., Carroll, K.C., Klugman, K., Ledeboer, N.A. and Miller, M.B. (2017) Changing Diagnostic Para-digms for Microbiology. American Academy of Microbiology Colloquium, Wash-ington DC, 17-18 October 2016, 23-25.
[13]  Sharma, D. and Singh Tomar, G. (2020) Comparative Energy Evaluation of LEACH Protocol for Monitoring Soil Parameter in Wireless Sensors Network. Materials Today: Proceedings, 29, 381-396. https://doi.org/10.1016/j.matpr.2020.07.292
[14]  Elbhiri, B., Saadane, R., Elfldhi, S. and Aboutajdine, D. (2010) Developed Distributed En-ergy-Efficient Clustering (DDEEC) for Heterogeneous Wireless Sensor Networks. 2010 5th International Symposium On I/V Communications and Mobile Net-work, Rabat, 30 September-2 October 2010, 1-4. https://doi.org/10.1109/isvc.2010.5656252
[15]  Kumar, D., Aseri, T.C. and Patel, R.B. (2009) EEHC: Energy Efficient Heterogeneous Clustered Scheme for Wireless Sensor Networks. Computer Communications, 32, 662-667. https://doi.org/10.1016/j.comcom.2008.11.025
[16]  Dutt, S., Agrawal, S. and Vig, R. (2018) Cluster-Head Restricted Energy Efficient Protocol (CREEP) for Routing in Heterogeneous Wireless Sensor Networks. Wireless Personal Com-munications, 100, 1477-1497. https://doi.org/10.1007/s11277-018-5649-x
[17]  Suresh, B. and Shyama Chandra Prasad, G. (2023) An Energy Efficient Secure Routing Scheme Using LEACH Protocol in WSN for IoT Networks. Measurement: Sensors, 30, Article 100883. https://doi.org/10.1016/j.measen.2023.100883
[18]  Vaishali, K.R., Rammohan, S.R., Natrayan, L., Usha, D. and Niveditha, V.R. (2021) Guided Container Selection for Data Streaming through Neural Learning in Cloud. In-ternational Journal of System Assurance Engineering and Management. https://doi.org/10.1007/s13198-021-01124-9
[19]  Alissa, A.I., Al-Akhras, M., ALsahli, M.S. and Alawairdhi, M. (2019) Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT), Amman, 9-11 April 2019, 107-112. https://doi.org/10.1109/jeeit.2019.8717400

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133