全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Biofertilizers: An Integrated Approach to Improving Soil Fertility, Plant Nutrition, Forest and Environmental Sustainability

DOI: 10.4236/oalib.1113141, PP. 1-26

Subject Areas: Microbiology, Environmental Sciences, Plant Science, Ecosystem Science, Soil Science, Ecology, Agronomy, Agricultural Science, Biodiversity

Keywords: Biofertilizers, Sustainable Agriculture, Soil Fertility, Plant Nutrition, Forest Ecology, Environmental Sustainability

Full-Text   Cite this paper   Add to My Lib

Abstract

Biofertilizers present a viable solution for enhancing soil fertility, improving plant nutrition, and advancing environmental sustainability in agriculture and forest ecosystems. These microorganism-based fertilizers not only supply essential nutrients to plants but also foster soil health, thereby reducing reliance on synthetic fertilizers. This review highlights various types of biofertilizers, such as mycorrhizal fungi, rhizobia, and compost, and examines their mechanisms of action and applications in sustainable agricultural and forestry practices. The potential benefits of biofertilizers include increased crop yields, enhanced soil carbon sequestration, improved biodiversity, and the promotion of forest health and resilience. However, challenges such as limited availability, standardization issues, and the need for integration with conventional practices must be addressed to maximize their effectiveness. Future research directions should focus on scaling up biofertilizer production, developing innovative formulations, and understanding the interactions between biofertilizers and soil microbial communities. By promoting the adoption of biofertilizers, we can contribute to environmentally friendly and socially responsible food systems, ultimately ensuring food security while preserving ecological balance. This review emphasizes the importance of collaborative efforts among researchers, farmers, and policymakers to integrate biofertilizers into sustainable practices, paving the way for a resilient agricultural and forest landscape that meets the needs of a growing population while safeguarding the environment for future generations.

Cite this paper

Ntsomboh-Ntsefong, G. , Gabriel, M. S. T. , Namuene, K. S. , Mélanie, D. T. C. and Kingsley, T. M. (2025). Biofertilizers: An Integrated Approach to Improving Soil Fertility, Plant Nutrition, Forest and Environmental Sustainability. Open Access Library Journal, 12, e13141. doi: http://dx.doi.org/10.4236/oalib.1113141.

References

[1]  Gu, D., Andreev, K. and Dupre, M.E. (2021) Major Trends in Population Growth around the World. China CDC Weekly, 3, 604-613. https://doi.org/10.46234/ccdcw2021.160
[2]  Lal, R. (2016) Feeding 11 Billion on 0.5 Billion Hectare of Area under Cereal Crops. Food and Energy Security, 5, 239-251. https://doi.org/10.1002/fes3.99
[3]  Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677. https://doi.org/10.1038/nature01014
[4]  Tripathi, S., Srivastava, P., Devi, R.S. and Bhadouria, R. (2020) Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. In: Agrochemicals Detection, Treatment and Remediation, Elsevier, 25-54. https://doi.org/10.1016/b978-0-08-103017-2.00002-7
[5]  Hossain, M.E., Shahrukh, S. and Hossain, S.A. (2022) Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. In: Water Science and Technology Library, Springer, 63-92. https://doi.org/10.1007/978-3-030-95542-7_4
[6]  Sarkar, S., Jaswal, A. and Singh, A. (2024) Sources of Inorganic Nonmetallic Contaminants (Synthetic Fertilizers, Pesticides) in Agricultural Soil and Their Impacts on the Adjacent Ecosys-tems. In: Bioremediation of Emerging Contaminants from Soils, Elsevier, 135-161. https://doi.org/10.1016/b978-0-443-13993-2.00007-4
[7]  Allen, P., Van Dusen, D., Lundy, J. and Gliessman, S. (1991) Integrating Social, Environmental, and Economic Issues in Sustainable Agriculture. American Journal of Alternative Agri-culture, 6, 34-39. https://doi.org/10.1017/s0889189300003787
[8]  Adisa, O., Ilugbusi, B.S., Adelekan, O.A., Asuzu, O.F. and Ndubuisi, N.L. (2024) A Comprehensive Review of Redefining Agricultural Economics for Sustainable Development: Overcoming Challenges and Seizing Opportunities in a Changing World. World Journal of Advanced Research and Reviews, 21, 2329-1241. https://doi.org/10.30574/wjarr.2024.21.1.0322
[9]  Power, A.G. (2010) Ecosystem Services and Agri-culture: Tradeoffs and Synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959-2971. https://doi.org/10.1098/rstb.2010.0143
[10]  Powlson, D.S., Gregory, P.J., Whalley, W.R., Quinton, J.N., Hopkins, D.W., Whitmore, A.P., et al. (2011) Soil Management in Relation to Sustainable Agriculture and Ecosystem Services. Food Policy, 36, S72-S87. https://doi.org/10.1016/j.foodpol.2010.11.025
[11]  Rehman, A., Farooq, M., Lee, D.J. and Siddique, K.H.M. (2022) Sustainable Agricultural Practices for Food Security and Ecosystem Services. Environmental Science and Pollution Research, 29, 84076-84095. https://doi.org/10.1007/s11356-022-23635-z
[12]  IAASTD (2009) Agriculture at a Crossroads: International Assessment of Agricultural Knowledge, Science and Technology for Development.
[13]  Arintyas, A.P.R.D.A. (2024) Women, Agriculture, and Villages: A Community of Empowerment Study to Achieve Wellbeing and Sus-tainable Development. Journal of Agrosociology and Sustainability, 2, 1-16. https://doi.org/10.61511/jassu.v2i1.2024.887
[14]  Li, M., Li, J., Haq, S.U. and Nadeem, M. (2024) Agriculture Land Use Transformation: A Threat to Sustainable Food Production Systems, Rural Food Security, and Farmer Well-Being? PLOS ONE, 19, e0296332. https://doi.org/10.1371/journal.pone.0296332
[15]  Nasser Salifu, G.A. (2025) Synergies and Trade-Offs of Sustainable Agricultural Practices for Improved Food Security in a Developing Country: A Systematic Review. Cogent Food & Agriculture, 11, Article 2518218. https://doi.org/10.1080/23311932.2025.2518218
[16]  IPCC (2019) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Man-agement, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.
[17]  Schlaepfer, M.A. and Lawler, J.J. (2023) Conserving Biodiversity in the Face of Rapid Climate Change Requires a Shift in Priorities. WIREs Climate Change, 14, e798. https://doi.org/10.1002/wcc.798
[18]  ROSALES, J. (2008) Economic Growth, Climate Change, Biodiversity Loss: Distribu-tive Justice for the Global North and South. Conservation Biology, 22, 1409-1417. https://doi.org/10.1111/j.1523-1739.2008.01091.x
[19]  Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., et al. (2017) Biofertilizers: A Potential Approach for Sustainable Agriculture Development. Environmen-tal Science and Pollution Research, 24, 3315-3335. https://doi.org/10.1007/s11356-016-8104-0
[20]  Sharma, B., Ti-wari, S., Kumawat, K.C. and Cardinale, M. (2023) Nano-Biofertilizers as Bio-Emerging Strategies for Sustainable Agriculture Development: Potentiality and Their Limitations. Science of the Total Environment, 860, Article 160476. https://doi.org/10.1016/j.scitotenv.2022.160476
[21]  Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A. and Kumar, G. (2022) Overview of Biofertilizers in Crop Production and Stress Management for Sustainable Agriculture. Frontiers in Plant Science, 13, Article 930340. https://doi.org/10.3389/fpls.2022.930340
[22]  Abbey, L., Abbey, J., Leke‐Aladekoba, A., Iheshiulo, E.M.A. and Ijenyo, M. (2019) Biopesticides and Biofertilizers: Types, Production, Benefits, and Utilization. In: By-products from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, Wiley, 479-500.
[23]  Singh, S.K., Pachauri, R.K., Khatoon, H., Katiyar, D. and Agnihotri, G. (2025) The Role of Biofertilizers in Enhancing Soil and Productivity—A Review. International Journal of Plant & Soil Science, 37, 141-161. https://doi.org/10.9734/ijpss/2025/v37i35355
[24]  Al Tawaha, A.R.M., Karnwal, A., Pati, S., Al-Tawaha, A.R., Upadhyay, A.K., Singh, A., et al. (2025) Biofertilizers: A Sustainable Solution for Enhancing Soil Fertility and Crop Productivity. In: Sus-tainable Agriculture under Drought Stress, Elsevier, 209-217. https://doi.org/10.1016/b978-0-443-23956-4.00014-4
[25]  Figiel, S., Rusek, P., Ryszko, U. and Brodowska, M.S. (2025) Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications. Agronomy, 15, Ar-ticle 1191. https://doi.org/10.3390/agronomy15051191
[26]  Bhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N. (2014) Biofertilizers Function as Key Player in Sustainable Agriculture by Improving Soil Fertility, Plant Tolerance and Crop Productivity. Microbial Cell Factories, 13, Article No. 66. https://doi.org/10.1186/1475-2859-13-66
[27]  Kumar, M.S., Reddy, G.C., Phogat, M. and Korav, S. (2018) Role of Bio-Fertilizers towards Sustainable Agricultural Development: A Re-view. Journal of Pharmacognosy and Phytochemistry, 7, 1915-1921.
[28]  Nabati, J., Nezami, A., Yousefi, A., Oskoueian, E., Oskoueian, A. and Ahmadi-Lahijani, M.J. (2025) Biofertilizers Containing Plant Growth Promoting Rhizobacteria Enhance Nutrient Uptake and Improve the Growth and Yield of Chickpea Plants in an Arid Environment. Scientific Reports, 15, Arti-cle No. 8331. https://doi.org/10.1038/s41598-025-93070-w
[29]  Etesami, H. (2025) Unveiling a Hidden Synergy: Em-powering Biofertilizers for Enhanced Plant Growth with Silicon in Stressed Agriculture. Plant, Cell & Environment, 48, 2411-2433. https://doi.org/10.1111/pce.15300
[30]  Tiwari, A.K., Moond, V., Choudhari, R.J., Badekhan, A., Tejasree, P., Baral, K., et al. (2023) Optimizing Bio-Fertilizers to Address Food Security and Advance Nutritional Sustainability. Journal of Experimental Agriculture International, 45, 235-249. https://doi.org/10.9734/jeai/2023/v45i122284
[31]  Mahapatra, D.M., Satapathy, K.C. and Panda, B. (2022) Biofertilizers and Nanofertilizers for Sustainable Agriculture: Phycoprospects and Challenges. Science of the Total Environment, 803, Article 149990. https://doi.org/10.1016/j.scitotenv.2021.149990
[32]  Misu, I.J., Kayess, M.O., Siddiqui, M.N., Gupta, D.R., Islam, M.N. and Islam, T. (2025) Microbiome Engineering for Sustainable Rice Production: Strategies for Biofertilization, Stress Toler-ance, and Climate Resilience. Microorganisms, 13, Article 233. https://doi.org/10.3390/microorganisms13020233
[33]  Alnaass, N.S., Agil, H.K., Alyaseer, N.A., Abubaira, M. and Ibra-him, H.K. (2023) The Effect of Biofertilization on Plant Growth and Its Role in Reducing Soil Pollution Problems with Chem-ical Fertilizers. African Journal of Advanced Pure and Applied Sciences, 2, 387-400.
[34]  Baweja, P., Kumar, S. and Kumar, G. (2020) Fertilizers and Pesticides: Their Impact on Soil Health and Environment. In: Soil Biology, Springer, 265-285. https://doi.org/10.1007/978-3-030-44364-1_15
[35]  Daniel, A.I., Fadaka, A.O., Gokul, A., Bakare, O.O., Aina, O., Fisher, S., et al. (2022) Biofertilizer: The Future of Food Security and Food Safety. Microorganisms, 10, Article 1220. https://doi.org/10.3390/microorganisms10061220
[36]  Kumar, S., Sindhu, S.S. and Kumar, R. (2022) Biofertilizers: An Ecofriendly Technology for Nutrient Recycling and Environmental Sustainability. Current Research in Microbial Sciences, 3, Article 100094. https://doi.org/10.1016/j.crmicr.2021.100094
[37]  Mącik, M., Gryta, A. and Frąc, M. (2020) Biofertiliz-ers in Agriculture: An Overview on Concepts, Strategies and Effects on Soil Microorganisms. Advances in Agronomy, 162, 31-87. https://doi.org/10.1016/bs.agron.2020.02.001
[38]  Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S. and Thami Alami, I. (2017) Composting Parameters and Compost Quality: A Literature Review. Organic Agriculture, 8, 141-158. https://doi.org/10.1007/s13165-017-0180-z
[39]  Mohammadi, K., Khalesro, S., Sohrabi, Y. and Heidari, G. (2011) A Review: Beneficial Effects of the Mycorrhizal Fungi for Plant Growth. Journal of Applied Environmental and Biological Sci-ences, 1, 310-319.
[40]  Khaliq, A., Perveen, S., Alamer, K.H., Zia Ul Haq, M., Rafique, Z., Alsudays, I.M., et al. (2022) Ar-buscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability, 14, Article 7840. https://doi.org/10.3390/su14137840
[41]  Bhantana, P., Rana, M.S., Sun, X., Moussa, M.G., Saleem, M.H., Syaifudin, M., et al. (2021) Arbuscular Mycorrhizal Fungi and Its Major Role in Plant Growth, Zinc Nutrition, Phosphorous Regulation and Phytoremediation. Symbiosis, 84, 19-37. https://doi.org/10.1007/s13199-021-00756-6
[42]  Ahmed, N., Li, J., Li, Y., Deng, L., Deng, L., Chachar, M., et al. (2025) Symbiotic Synergy: How Arbuscular Mycorrhizal Fungi Enhance Nutrient Up-take, Stress Tolerance, and Soil Health through Molecular Mechanisms and Hormonal Regulation. IMA Fungus, 16, e144989. https://doi.org/10.3897/imafungus.16.144989
[43]  George, E. and Marschner, H. (1996) Nutrient and Water Uptake by Roots of Forest Trees. Zeitschrift für Pflanzenernährung und Bodenkunde, 159, 11-21. https://doi.org/10.1002/jpln.1996.3581590103
[44]  Zhang, Z., Zhang, J., Xu, G., Zhou, L. and Li, Y. (2018) Arbuscular Mycorrhizal Fungi Improve the Growth and Drought Tolerance of Zenia Insignis Seedlings under Drought Stress. New For-ests, 50, 593-604. https://doi.org/10.1007/s11056-018-9681-1
[45]  Pickles, B.J. and Simard, S.W. (2017) Mycorrhizal Networks and Forest Resilience to Drought. In: Mycorrhizal Mediation of Soil, Elsevier, 319-339. https://doi.org/10.1016/b978-0-12-804312-7.00018-8
[46]  Salto, C.S., Sagadin, M.B., Luna, C.M., Oberschelp, G.P.J., Harrand, L. and Cabello, M.N. (2020) Interactions between Mineral Fertilization and Arbuscular Mycorrhizal Fungi Improve Nursery Growth and Drought Tolerance of Prosopis Alba Seedlings. Agroforestry Systems, 94, 103-111. https://doi.org/10.1007/s10457-019-00371-x
[47]  Igiehon, N.O. and Babalola, O.O. (2017) Biofertilizers and Sustaina-ble Agriculture: Exploring Arbuscular Mycorrhizal Fungi. Applied Microbiology and Biotechnology, 101, 4871-4881. https://doi.org/10.1007/s00253-017-8344-z
[48]  Bender, S.F. and van der Heijden, M.G.A. (2015) Soil Biota Enhance Agricultural Sustainability by Improving Crop Yield, Nutrient Uptake and Reducing Nitrogen Leaching Losses. Journal of Applied Ecology, 52, 228-239. https://doi.org/10.1111/1365-2664.12351
[49]  Plenchette, C., Clermont-Dauphin, C., Meynard, J.M. and Fortin, J.A. (2005) Managing Arbuscular Mycorrhizal Fungi in Cropping Systems. Canadian Journal of Plant Science, 85, 31-40. https://doi.org/10.4141/p03-159
[50]  Dagher, D., Taskos, D., Mourouzidou, S. and Monokrou-sos, N. (2025) Microbial-enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae, 11, Article 592. https://doi.org/10.3390/horticulturae11060592
[51]  Emmanuel, O.C. and Babalola, O.O. (2020) Productivity and Qual-ity of Horticultural Crops through Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Bacteria. Microbiological Research, 239, Article 126569. https://doi.org/10.1016/j.micres.2020.126569
[52]  Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., et al. (2015) Arbuscular Mycorrhizal Fungi Act as Biostimulants in Horticultural Crops. Scientia Horticulturae, 196, 91-108. https://doi.org/10.1016/j.scienta.2015.09.002
[53]  Zhu, B., Gao, T., Zhang, D., Ding, K., Li, C. and Ma, F. (2022) Func-tions of Arbuscular Mycorrhizal Fungi in Horticultural Crops. Scientia Horticulturae, 303, Article 111219. https://doi.org/10.1016/j.scienta.2022.111219
[54]  Baum, C., El-Tohamy, W. and Gruda, N. (2015) Increasing the Productivity and Product Quality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A Review. Scientia Horticulturae, 187, 131-141. https://doi.org/10.1016/j.scienta.2015.03.002
[55]  Kumar, N., Srivastava, P., Vishwakarma, K., Kumar, R., Kuppala, H., Maheshwari, S.K., et al. (2020) The Rhizobium–Plant Symbiosis: State of the Art. In: Plant Microbe Symbio-sis, Springer, 1-20. https://doi.org/10.1007/978-3-030-36248-5_1
[56]  Wang, E.T., Tian, C.F., Chen, W.F., Young, J.P.W., Chen, W.X. and Wang, E.T. (2019) Symbiosis between Rhizobia and Legumes. In: Ecology and Evolution of Rhizobia: Princi-ples and Applications, Springer, 3-19.
[57]  Zahran, H.H. (1999) Rhizobium-Legume Symbiosis and Nitrogen Fixation un-der Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews, 63, 968-989. https://doi.org/10.1128/mmbr.63.4.968-989.1999
[58]  Mabrouk, Y., Hemissi, I., Salem, I.B., Mejri, S., Saidi, M. and Bel-hadj, O. (2018) Potential of Rhizobia in Improving Nitrogen Fixation and Yields of Legumes. Symbiosis, 107, 1-16. https://doi.org/10.5772/intechopen.73495
[59]  Yadegari, M., Rahmani, H.A., Noormohammadi, G. and Ayneband, A. (2010) Plant Growth Promoting Rhizobacteria Increase Growth, Yield and Nitrogen Fixation Inphaseolus Vulgaris. Journal of Plant Nutrition, 33, 1733-1743. https://doi.org/10.1080/01904167.2010.503776
[60]  Allito, B.B., Nana, E.M. and Alemneh, A.A. (2015) Rhizobia Strain and Legume Genome Interaction Effects on Nitrogen Fixation and Yield of Grain Legume: A Review. Molecular Soil Biology, 6, 1-6.
[61]  Sindhu, S.S., Sharma, R., Sindhu, S. and Sehrawat, A. (2019) Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture. In: Soil Fertility Management for Sustainable De-velopment, Springer, 101-166. https://doi.org/10.1007/978-981-13-5904-0_7
[62]  Zhou, Y., Zhu, H. and Yao, Q. (2017) Improving Soil Fertility and Soil Functioning in Cover Cropped Agroecosystems with Symbiotic Microbes. In: Agro-Environmental Sustainability, Springer, 149-171. https://doi.org/10.1007/978-3-319-49724-2_8
[63]  Yuvaraj, M., Pandiyan, M. and Gayathri, P. (2020) Role of Legumes in Improving Soil Fertility Status. In: Legume Crops-Prospects, Pro-duction and Uses, IntechOpen, 16-27.
[64]  Insam, H., Klammsteiner, T. and Gómez-Brandòn, M. (2023) Biology of Com-post. In: Encyclopedia of Soils in the Environment, Elsevier, 522-532. https://doi.org/10.1016/b978-0-12-822974-3.00178-6
[65]  Sánchez, ó.J., Ospina, D.A. and Montoya, S. (2017) Com-post Supplementation with Nutrients and Microorganisms in Composting Process. Waste Management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
[66]  Insam, H. and de Bertoldi, M. (2007) Microbiology of the Compost-ing Process. In: Waste Management Series, Elsevier, 25-48. https://doi.org/10.1016/s1478-7482(07)80006-6
[67]  Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., et al. (2020) Role of Organic Fertilizers in Improving Soil Fertility. In: Contaminants in Agriculture, Springer, 61-77. https://doi.org/10.1007/978-3-030-41552-5_3
[68]  Watson, C.A., Atkinson, D., Gosling, P., Jackson, L.R. and Rayns, F.W. (2002) Managing Soil Fertility in Organic Farming Systems. Soil Use and Management, 18, 239-247. https://doi.org/10.1111/j.1475-2743.2002.tb00265.x
[69]  Arden-Clarke, C. and Hodges, R.D. (1988) The Environmen-tal Effects of Conventional and Organic/Biological Farming Systems. II. Soil Ecology, Soil Fertility and Nutrient Cycles. Biolog-ical Agriculture & Horticulture, 5, 223-287. https://doi.org/10.1080/01448765.1988.9755147
[70]  Singha, R. and Singha, S. (2024) Composting for a Sustainable Future: Turning Waste into Nutrient-Rich Soil. In: Water-Soil-Plant-Animal Nexus in the Era of Climate Change, IGI Global, 279-297.
[71]  Ayilara, M.S., Olanrewaju, O.S., Babalola, O.O. and Odeyemi, O. (2020) Waste Management through Composting: Challenges and Potentials. Sustainability, 12, Article 4456. https://doi.org/10.3390/su12114456
[72]  Bremaghani, A. (2024) Utilization of Organic Waste in Compost Fertilizer Production: Implications for Sustainable Agriculture and Nutrient Management. Law and Economics, 18, 86-98.
[73]  Billah, M., Khan, M., Bano, A., Hassan, T.U., Munir, A. and Gurmani, A.R. (2019) Phosphorus and Phosphate Solubilizing Bacteria: Keys for Sustainable Agriculture. Geomicrobiology Journal, 36, 904-916. https://doi.org/10.1080/01490451.2019.1654043
[74]  Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S. and Rasheed, M. (2009) Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and Their Role in Crop Production. Journal of Agricul-ture and Biological Sciences, 1, 48-58.
[75]  Khan, H., Akbar, W.A., Shah, Z., Rahim, H.U., Taj, A. and Alatalo, J.M. (2022) Coupling Phosphate-Solubilizing Bacteria (PSB) with Inorganic Phosphorus Fertilizer Improves Mungbean (Vigna Radiata) Phosphorus Acquisition, Nitrogen Fixation, and Yield in Alkaline-Calcareous Soil. Heliyon, 8, e09081. https://doi.org/10.1016/j.heliyon.2022.e09081
[76]  Tian, J., Ge, F., Zhang, D., Deng, S. and Liu, X. (2021) Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10, Article 158. https://doi.org/10.3390/biology10020158
[77]  Jnawali, A.D., Ojha, R.B. and Marahatta, S. (2015) Role of Azotobacter in Soil Fertility and Sustainability: A Review. Advances in Plants and Agriculture Research, 2, 1-5.
[78]  Sumbul, A., Ansari, R.A., Rizvi, R. and Mahmood, I. (2020) Azotobacter: A Potential Bio-Fertilizer for Soil and Plant Health Management. Saudi Journal of Biological Sciences, 27, 3634-3640. https://doi.org/10.1016/j.sjbs.2020.08.004
[79]  Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., et al. (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology, 12, Article 628379. https://doi.org/10.3389/fmicb.2021.628379
[80]  Saha, S., Paul, D., Poudel, T.R., Basunia, N.M., Hasan, T., Hasan, M., et al. (2023) Biofertilizer Science and Practice for Agriculture and Forestry: A Review. Journal of Applied Biology & Biotechnology, 11, 31-44. https://doi.org/10.7324/jabb.2023.148741
[81]  Singh, S., Singh, R.J., Kumar, K., Singh, B. and Shukla, L. (2013) Biofertilizers and Green Manuring for Sustainable Agriculture. In: Modern Technologies for Sustainable Agriculture, 129-150.
[82]  Chakraborty, T., & Akhtar, N. (2021). Biofertilizers: Characteristic Features and Applications. In: Biofertilizers: Study and Impact, Wiley, 429-489.
[83]  Santos, F., Melkani, S., Oliveira-Paiva, C., Bini, D., Pavuluri, K., Gatiboni, L., et al. (2024) Biofertilizer Use in the United States: Definition, Regulation, and Prospects. Applied Microbiology and Biotechnology, 108, 1-16. https://doi.org/10.1007/s00253-024-13347-4
[84]  Sethi, G., Behera, K.K., Sayyed, R., Adarsh, V., Sipra, B.S., Singh, L., et al. (2025) Enhancing Soil Health and Crop Productivity: The Role of Zinc-Solubilizing Bacteria in Sustainable Agriculture. Plant Growth Regulation, 105, 601-617. https://doi.org/10.1007/s10725-025-01294-7
[85]  Kobua, C.K., Wang, Y. and Jou, Y. (2025) Exploring the Roles of Plant Growth-Promoting Rhizobacteria (PGPR) and Alternate Wetting and Drying (AWD) in Sustainable Rice Cultivation. Soil Systems, 9, Article 61. https://doi.org/10.3390/soilsystems9020061
[86]  Yeremko, L., Czopek, K., Staniak, M., Marenych, M. and Hanhur, V. (2025) Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review. Biomolecules, 15, Article 118. https://doi.org/10.3390/biom15010118
[87]  Jaiswal, S.K. and Dakora, F.D. (2025) Maximizing Photosynthesis and Plant Growth in African Legumes through Rhizobial Partnerships: The Road behind and Ahead. Microorganisms, 13, Article 581. https://doi.org/10.3390/microorganisms13030581
[88]  Singla, P. and Garg, N. (2017) Plant Flavonoids: Key Players in Signaling, Establishment, and Regulation of Rhizobial and Mycorrhizal Endosymbioses. In: Mycorrhiza—Function, Diversity, State of the Art, Springer, 133-176. https://doi.org/10.1007/978-3-319-53064-2_8
[89]  Skorupska, A., Kidaj, D. and Wielbo, J. (2017) Flavonoids and Nod Factors: Importance in Legume-Microbe Interactions and Legume Improvement. In: Microbes for Legume Improvement, Springer, 75-94. https://doi.org/10.1007/978-3-319-59174-2_3
[90]  Bashan, Y. and de-Bashan, L.E. (2010) How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/s0065-2113(10)08002-8
[91]  Cassán, F., Vanderleyden, J. and Spaepen, S. (2014) Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation, 33, 440-459. https://doi.org/10.1007/s00344-013-9362-4
[92]  Ercole, T.G., Bonotto, D.R., Hungria, M., Kava, V.M. and Galli, L.V. (2025) The Role of Endophytic Bacteria in Enhancing Plant Growth and Health for Sustainable Agriculture. Antonie van Leeuwenhoek, 118, Article No. 88. https://doi.org/10.1007/s10482-025-02100-0
[93]  Pooja, P., Tallapragada, S., Saini, S., Punia, S., Janaagal, M., Kumar, V., et al. (2025) Exploring the Potential of Arbuscular Mycorrhizal Fungi as Biofertilizers to Enhance Growth, Nutrient Acquisition and Yield in Chickpea Genotypes under Salinity Stress. Journal of Soil Science and Plant Nutrition, 1-16. https://doi.org/10.1007/s42729-025-02497-7
[94]  Ishaq, L.F., Amalia, F.C., Benggu, Y.I., Tae, A.S.J.A. and Airthur, M.M. (2025) The Potential of Arbuscular Mycorrhizal Fungi as Biofertilizer to Reduce Chemical Ferti-lizer Use in Calcareous Soil. IOP Conference Series: Earth and Environmental Science, 1482, Article 012015. https://doi.org/10.1088/1755-1315/1482/1/012015
[95]  Abdelhameid, N.M., Niel, E. and Sary, D. (2025) Integrated Use of Biofertilizers, Compost, and Mineral Fertilizers to Improve Wheat Productivity and Soil Fertility in Calcareous Soils. Alexandria Science Exchange Journal, 46, 285-301. https://doi.org/10.21608/asejaiqjsae.2025.423958
[96]  Hoffman, B.M., Lukoyanov, D., Yang, Z., Dean, D.R. and Seefeldt, L.C. (2014) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews, 114, 4041-4062. https://doi.org/10.1021/cr400641x
[97]  Ramos Cabrera, E.V., Delgado Espinosa, Z.Y. and Solis Pino, A.F. (2024) Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12, Article 1591. https://doi.org/10.3390/microorganisms12081591
[98]  Pang, F., Li, Q., Solanki, M.K., Wang, Z., Xing, Y. and Dong, D. (2024) Soil Phosphorus Transformation and Plant Uptake Driven by Phos-phate-Solubilizing Microorganisms. Frontiers in Microbiology, 15, Article 1383813. https://doi.org/10.3389/fmicb.2024.1383813
[99]  Timofeeva, A.M., Galyamova, M.R. and Sedykh, S.E. (2024) How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? Plants, 13, Article 2371. https://doi.org/10.3390/plants13172371
[100]  Oyedele, A.O., Ezaka, E. and Taiwo, L.B. (2024) Microbial Biosynthesis of the Classical Phytohormones by Plant Growth-Promoting Microorganisms in Plants. In: Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration, Elsevier, 345-366. https://doi.org/10.1016/b978-0-443-13318-3.00004-5
[101]  Rani, N. and Sagar, N.A. (2024) Metabolomics: A Paradigm Shift in Understanding Biofertilizers Dynamics. In: Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry, Springer, 35-51. https://doi.org/10.1007/978-981-97-2910-4_3
[102]  Nawaz, M., Shabbir, S., Manzoor, N., Xu, H., Wang, Z., Arshad, K.T., et al. (2025) Recent Advances in Biofertilizer Development. In: Agricultural Nutrient Pollution and Climate Change, Springer, 271-309. https://doi.org/10.1007/978-3-031-80912-5_10
[103]  Mishra, P. and Dash, D. (2014) Rejuvenation of Biofertilizer for Sustainable Agriculture and Economic Development. Consilience, 11, 41-61.
[104]  Kumar, R., Kumar, A. and Saikia, P. (2022) Deforestation and Forests Degradation Impacts on the Environ-ment. In: Environmental Degradation: Challenges and Strategies for Mitigation, Springer, 19-46.
[105]  Nosheen, S., Ajmal, I. and Song, Y. (2021) Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability, 13, Article 1868. https://doi.org/10.3390/su13041868
[106]  Usharani, K.V., Roopashree, K.M. and Naik, D. (2019) Role of Soil Physical, Chemical and Biological Properties for Soil Health Improvement and Sustainable Agriculture. Journal of Phar-macognosy and Phytochemistry, 8, 1256-1267.
[107]  Ghimirey, V., Chaurasia, J., Acharya, N., Dhungana, R. and Chaurasiya, S. (2024) Biofertilizers: A Sustainable Strategy for Enhancing Physical, Chemical, and Biological Properties of Soil. Innova-tions in Agriculture, 7, 1-11. https://doi.org/10.3897/ia.2024.128697
[108]  Saha, L. and Bauddh, K. (2020) Sustainable Agricultural Approaches for Enhanced Crop Productivity, Better Soil Health, and Improved Ecosystem Services. In: Ecologi-cal and Practical Applications for Sustainable Agriculture, Springer, 1-23. https://doi.org/10.1007/978-981-15-3372-3_1
[109]  Jilani, G., Akram, A., Ali, R.M., Hafeez, F.Y., Shamsi, I.H., Chaudhry, A.N., et al. (2007) Enhancing Crop Growth, Nutrients Availability, Economics and Beneficial Rhizosphere Microflora through Organic and Biofertilizers. Annals of Microbiology, 57, 177-184. https://doi.org/10.1007/bf03175204
[110]  Aloo, B.N., Tripathi, V., Makumba, B.A. and Mbega, E.R. (2022) Plant Growth-Promoting Rhizobacterial Biofertilizers for Crop Produc-tion: The Past, Present, and Future. Frontiers in Plant Science, 13, Article 1002448. https://doi.org/10.3389/fpls.2022.1002448
[111]  Mahmud, A.A., Upadhyay, S.K., Srivastava, A.K. and Bhojiya, A.A. (2021) Biofertilizers: A Nexus between Soil Fertility and Crop Productivity under Abiotic Stress. Current Research in Envi-ronmental Sustainability, 3, Article 100063. https://doi.org/10.1016/j.crsust.2021.100063
[112]  Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., et al. (2018) Improving Crop Yield and Nutrient Use Efficiency via Biofertiliza-tion—A Global Meta-Analysis. Frontiers in Plant Science, 8, Article 2204. https://doi.org/10.3389/fpls.2017.02204
[113]  Asoegwu, C.R., Awuchi, C.G., Nelson, K.C.T., Orji, C.G., Nwosu, O.U., Eg-bufor, U.C. and Awuchi, C.G. (2020) A Review on the Role of Biofertilizers in Reducing Soil Pollution and Increasing Soil Nu-trients. Himalayan Journal of Agriculture, 1, 34-38.
[114]  Suhag, M. (2016) Potential of Biofertilizers to Replace Chemical Fertilizers. International Advanced Research Journal in Science, Engineering and Technology, 3, 163-167.
[115]  Dębska, B., Długosz, J., Piotrowska-Długosz, A. and Banach-Szott, M. (2016) The Impact of a Bio-Fertilizer on the Soil Organic Matter Status and Carbon Sequestration—Results from a Field-Scale Study. Journal of Soils and Sediments, 16, 2335-2343. https://doi.org/10.1007/s11368-016-1430-5
[116]  Dejene, D. and Tilahun, E. (2019) Role of Biochar on Soil Fertility Im-provement and Greenhouse Gases Sequestration. Horticulture International Journal, 3, 291-298. https://doi.org/10.15406/hij.2019.03.00144
[117]  Sarfraz, R., Hussain, A., Sabir, A., Ben Fekih, I., Ditta, A. and Xing, S. (2019) Role of Biochar and Plant Growth Promoting Rhizobacteria to Enhance Soil Carbon Sequestration—A Review. Envi-ronmental Monitoring and Assessment, 191, Article No. 251. https://doi.org/10.1007/s10661-019-7400-9
[118]  Dal Cortivo, C., Ferrari, M., Visioli, G., Lauro, M., Fornasier, F., Barion, G., et al. (2020) Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Frontiers in Plant Science, 11, Article 72. https://doi.org/10.3389/fpls.2020.00072
[119]  Mori, A.S., Lertzman, K.P. and Gustafsson, L. (2016) Biodiver-sity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. Journal of Applied Ecology, 54, 12-27. https://doi.org/10.1111/1365-2664.12669
[120]  Wang, L., Wei, F., Tagesson, T., Fang, Z. and Svenning, J. (2025) Transforming Forest Management through Rewilding: Enhancing Biodiversity, Resilience, and Biosphere Sustaina-bility under Global Change. One Earth, 8, Article 101195. https://doi.org/10.1016/j.oneear.2025.101195
[121]  Mori, A.S., Suzuki, K.F., Soga, M., Ota, T., Hisano, M., Arata, Y., et al. (2025) Assessing the Priorities of Stakeholders Regarding Forest Ecosystem Services in Japan. Journal of Applied Ecology, 62, 753-760. https://doi.org/10.1111/1365-2664.70008
[122]  Mori, A.S., Spies, T.A., Sudmeier-Rieux, K. and Andrade, A. (2013) Re-framing Ecosystem Management in the Era of Climate Change: Issues and Knowledge from Forests. Biological Conservation, 165, 115-127. https://doi.org/10.1016/j.biocon.2013.05.020
[123]  Liu, W.Y.Y. and Poobathy, R. (2021) Biofertilizer Uti-lization in Forestry. In: Biofertilizers: Study and Impact, Wiley, 1-37.
[124]  Cheng, X., Wang, G., Zhou, Y., Pan, C., Wang, Z., Zhou, G., et al. (2025) Biofertilizer Outcompete Chemical Fertilizer in Enhancing Carbon Sequestration in Moso Bamboo (Phyllostachys edulis (Carriere) J. Houzeau) Forests. Industrial Crops and Products, 232, Article 121244. https://doi.org/10.1016/j.indcrop.2025.121244
[125]  Vitousek, P.M. (1991) Can Planted Forests Counteract Increasing Atmospheric Carbon Dioxide? Journal of Environmental Quality, 20, 348-354. https://doi.org/10.2134/jeq1991.00472425002000020003x
[126]  Lal, R. (2009) Sequestering Atmospheric Carbon Dioxide. Critical Reviews in Plant Sciences, 28, 90-96. https://doi.org/10.1080/07352680902782711
[127]  Pathak, V.M., Rana, N., Pandey, S., Sarkar, A.K., Chauhan, A., Jindal, T., et al. (2024) Exploration of Extremophiles: Potential Applications in Agriculture and Soil Health Improvement Utilizing Extremophiles. In: Extremophiles for Sustainable Agriculture and Soil Health Improvement, Springer, 91-119. https://doi.org/10.1007/978-3-031-70203-7_5
[128]  Devi, R., Kaur, T., Negi, R., Sharma, B., Chowdhury, S., Kapoor, M., et al. (2024) Biodiversity, Mechanisms, and Potential Biotechnological Applications of Minerals Solubilizing Extremophilic Microbes: A Review. Journal of Applied Biology & Biotechnology, 12, 23-40. https://doi.org/10.7324/jabb.2024.159821
[129]  Tiwari, P., Bose, S.K., Park, K., Dufossé, L. and Fouillaud, M. (2024) Plant-Microbe Interactions under the Extreme Habitats and Their Potential Applications. Microorganisms, 12, Article 448. https://doi.org/10.3390/microorganisms12030448
[130]  Ali, I., Qaiser, H., Abdullah, R., Kaleem, A., Iqtedar, M., Iqbal, I., et al. (2024) Prospective Roles of Extremophilic Fungi in Climate Change Mitigation Strategies. Journal of Fungi, 10, Article 385. https://doi.org/10.3390/jof10060385
[131]  Kumar, A., Shrivastava, M. and Saxena, P. (2024) Extremophiles Adap-tation and Its Utilization in Mitigating Abiotic Stress in Crops. In: Extremophiles for Sustainable Agriculture and Soil Health Improvement, Springer, 63-88. https://doi.org/10.1007/978-3-031-70203-7_4
[132]  Jojy, E.T. and Manohar K.A. (2024) Strengthening Tree Nutrition through the Application of Biofertilizers. In: Sustainable Plant Nutrition in a Changing World, Springer, 267-284. https://doi.org/10.1007/978-3-031-53590-1_13
[133]  Mnyazi Jefwa, J., Okoth, S., Baraza, D., Korir, M.J. and Sakha, M.A. (2025) Ectomycorrhizal Fungi as Biofertilizers in Forestry Restoration in Africa. In: Forest Fungi, Else-vier, 463-478. https://doi.org/10.1016/b978-0-443-18870-1.00013-5
[134]  Tomao, A., Antonio Bonet, J., Castaño, C. and de-Miguel, S. (2020) How Does Forest Management Affect Fungal Diversity and Community Composition? Current Knowledge and Future Perspectives for the Conservation of Forest Fungi. Forest Ecology and Management, 457, Article 117678. https://doi.org/10.1016/j.foreco.2019.117678
[135]  Bernreiter, A. and Teijeiro, R.G. (2022) Fungal Biodiversity and Forest Soil Health Ecosystems. Sustainable Soil Management as a Key to Preserve Soil Biodiversity and Stop Its Degrada-tion.
[136]  Al-Nasser, M., Al-Mansour, Y. and Al-Sayid, N. (2024) The Role of Mycorrhizal Fungi in Forest Ecosystem Health. Journal of Selvicoltura Asean, 1, 271-281.
[137]  Muthukkaruppan, E., Lavanya, A.K., Chinnathambi, V., Suku, A.T. and Paul, S. (2024) Application of Bioinoculants in Horticulture, Plantation, and Forest Farming: Is It Truly Ecologically Sustainable? In: Bio-Inoculants in Horticultural Crops, Elsevier, 21-48. https://doi.org/10.1016/b978-0-323-96005-2.00003-9
[138]  Haroun, M., Xie, S., Awadelkareem, W., Wang, J. and Qian, X. (2023) Influence of Biofertilizer on Heavy Metal Bioremediation and Enzyme Activities in the Soil to Revealing the Poten-tial for Sustainable Soil Restoration. Scientific Reports, 13, Article No. 20684. https://doi.org/10.1038/s41598-023-44986-8
[139]  Grodnitskaya, I.D., Senashova, V.A., Antonov, G.I., Polyakova, G.G., Pashkeeva, O.E. and Pashenova, N.V. (2023) Bioindication of the Status of Dark Gray Soil in Pine Forests of Krasnoyarsk Forest-Steppe under Anthropogenic Impact. Eurasian Soil Science, 56, 1343-1358. https://doi.org/10.1134/s1064229323601233
[140]  Aguilar-Paredes, A., Valdés, G. and Nuti, M. (2020) Ecosystem Func-tions of Microbial Consortia in Sustainable Agriculture. Agronomy, 10, Article 1902. https://doi.org/10.3390/agronomy10121902
[141]  Sharma, S., Gupta, R., Dugar, G. and Srivastava, A.K. (2012) Impact of Application of Biofertilizers on Soil Structure and Resident Microbial Community Structure and Function. In: Bacteria in Ag-robiology: Plant Probiotics, Springer, 65-77. https://doi.org/10.1007/978-3-642-27515-9_4
[142]  Malusà, E., Pinzari, F. and Canfora, L. (2016) Efficacy of Biofertilizers: Challenges to Improve Crop Production. In: Microbial Inoculants in Sus-tainable Agricultural Productivity, Springer, 17-40. https://doi.org/10.1007/978-81-322-2644-4_2
[143]  Mitter, E.K., Tosi, M., Obregón, D., Dunfield, K.E. and Germida, J.J. (2021) Rethinking Crop Nutrition in Times of Modern Microbiology: Inno-vative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5, Article 606815. https://doi.org/10.3389/fsufs.2021.606815
[144]  Yadav, A. and Yadav, K. (2024) Challenges and Opportunities in Bio-fertilizer Commercialization. SVOA Microbiology, 5, 1-14. https://doi.org/10.58624/svoamb.2024.05.037
[145]  Andreote, F.D., Gumiere, T. and Durrer, A. (2014) Exploring Interactions of Plant Microbiomes. Scientia Agricola, 71, 528-539. https://doi.org/10.1590/0103-9016-2014-0195
[146]  Glick, B.R. and Gamalero, E. (2021) Recent Developments in the Study of Plant Microbiomes. Microorganisms, 9, Article 1533. https://doi.org/10.3390/microorganisms9071533
[147]  Sarnaik, A., Liu, A., Nielsen, D. and Varman, A.M. (2020) High-throughput Screening for Efficient Microbial Biotechnology. Current Opinion in Biotechnology, 64, 141-150. https://doi.org/10.1016/j.copbio.2020.02.019
[148]  Kjeldgaard, B., Neves, A.R., Fonseca, C., Kovács, á.T. and Domínguez-Cuevas, P. (2022) Quantitative High-Throughput Screening Methods Designed for Identification of Bacterial Biocontrol Strains with Antifungal Properties. Microbiology Spectrum, 10, e01433-21. https://doi.org/10.1128/spectrum.01433-21
[149]  Atieno, M., Herrmann, L., Nguyen, H.T., Phan, H.T., Nguyen, N.K., Srean, P., et al. (2020) Assessment of Biofertilizer Use for Sustainable Agriculture in the Great Mekong Region. Journal of Environmental Management, 275, Article 111300. https://doi.org/10.1016/j.jenvman.2020.111300
[150]  Ibáñez, A., Garrido-Chamorro, S., Vasco-Cárdenas, M. and Barreiro, C. (2023) From Lab to Field: Biofertilizers in the 21st Century. Hor-ticulturae, 9, Article 1306. https://doi.org/10.3390/horticulturae9121306
[151]  Govil, T., Vaughn, M., Kaur, J., Ustunisik, G., Soeder, D.J., Lingwall, B.N., et al. (2024) Extremophiles-Mediated Carbon Dioxide Sequestration. In: Microbial Diversity in the Genomic Era, Elsevier, 713-730. https://doi.org/10.1016/b978-0-443-13320-6.00017-2
[152]  Rawat, M., Chauhan, M. and Pandey, A. (2024) Extremophiles and Their Expanding Biotechnological Applications. Archives of Microbiology, 206, Article No. 247. https://doi.org/10.1007/s00203-024-03981-x
[153]  Prando, A.M., Barbosa, J.Z., de Oliveira, A.B., Nogueira, M.A., Possamai, E.J. and Hungria, M. (2024) Benefits of Soybean Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: Large-Scale Validation with Farmers in Brazil. European Journal of Agronomy, 155, Article 127112. ttps://doi.org/10.1016/j.eja.2024.127112
[154]  Jesus, A.P.D., Reis, M.N.O., Lourenço, L.L., Mol, D.J.D.S., Bessa, L.A., Brasil, M.D.S., et al. (2025) Agronomic Efficiency of Compost Extracts and Nitrogen-Fixing Bacteria in Soybean Crops. Microorgan-isms, 13, Article 341. https://doi.org/10.3390/microorganisms13020341
[155]  Andreata, M.F.L., Afonso, L., Niekawa, E.T.G., Salomão, J.M., Basso, K.R., Silva, M.C.D., et al. (2024) Microbial Fertilizers: A Study on the Current Scenario of Brazil-ian Inoculants and Future Perspectives. Plants, 13, Article 2246. https://doi.org/10.3390/plants13162246
[156]  Fer-reyra-Suarez, D., García-Depraect, O. and Castro-Muñoz, R. (2024) A Review on Fungal-Based Biopesticides and Biofertiliz-ers Production. Ecotoxicology and Environmental Safety, 283, Article 116945. https://doi.org/10.1016/j.ecoenv.2024.116945
[157]  Barwant, M.M., Singh, B., Sharma, S., Gore, N.T. and Mohammad, A. (2025) Role of Mycorrhizal Association in Leguminous Plant Growth. In: Recent Trends and Applications of Leguminous Microgreens as Functional Foods, Springer, 277-295. https://doi.org/10.1007/978-3-031-75678-8_13
[158]  Odoh, C.K., Eze, C.N., Obi, C.J., Anyah, F., Egbe, K., Unah, U.V., et al. (2020) Fungal Biofertilizers for Sustainable Agricultural Productiv-ity. In: Fungal Biology, Springer, 199-225. https://doi.org/10.1007/978-3-030-45971-0_9
[159]  Okon, Y. and Itzigsohn, R. (1995) The Development of Azospirillum as a Commercial Inoculant for Improving Crop Yields. Biotechnology Advances, 13, 415-424. https://doi.org/10.1016/0734-9750(95)02004-m
[160]  Marks, B.B., Megías, M., Ollero, F.J., Nogueira, M.A., Araujo, R.S. and Hungria, M. (2015) Maize Growth Promotion by Inoculation with Azospirillum brasilense and Metabolites of Rhizobium tropici Enriched on Lipo-Chitooligosaccharides (LCOS). AMB Express, 5, 1-11. https://doi.org/10.1186/s13568-015-0154-z
[161]  Bano, Q.U.D.S.I.A., Ilyas, N., Bano, A., Zafar, N.A.D.I.A., Akram, A.B.I.D.A. and Hassan, F. (2013) Effect of Azospirillum Inoculation on Maize (Zea mays L.) under Drought Stress. Pakistan Journal of Botany, 45, 13-20.
[162]  Galindo, F.S., Rodrigues, W.L., Fernandes, G.C., Boleta, E.H.M., Jalal, A., Rosa, P.A.L., et al. (2022) Enhancing Agronomic Efficiency and Maize Grain Yield with Azospirillum brasilense Inoculation under Brazilian Savannah Conditions. European Journal of Agronomy, 134, Article 126471. https://doi.org/10.1016/j.eja.2022.126471
[163]  Galindo, F.S., Teixeira Filho, M.C.M., Buzetti, S., Santini, J.M.K., Alves, C.J., Nogueira, L.M., et al. (2016) Corn Yield and Foliar Diagnosis Affected by Nitrogen Fertilization and Inoculation with Azospi-rillum brasilense. Revista Brasileira de Ciência do Solo, 40, e0150364. https://doi.org/10.1590/18069657rbcs20150364
[164]  Htwe, A.Z., Moh, S.M., Soe, K.M., Moe, K. and Yamakawa, T. (2019) Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy, 9, Article 77. https://doi.org/10.3390/agronomy9020077
[165]  Abd El-Lattief, E.A. (2016) Use of Azospirillum and Azobacter Bacteria as Biofertilizers in Cereal Crops: A Review. International Journal of Engineering and Applied Science, 6, 36-44.
[166]  Sellappan, R. and Thangavel, K. (2025) Role of Arbuscular Mycorrhizal Fungi (AMF) in Organic Vegetables Production. In: Organic Production of Vegetable Crops, Apple Academic Press, 245-266. https://doi.org/10.1201/9781003539049-11
[167]  Gnanachitra, M., Balachandar, D. and Kaur, J. (2025) Role of Bioferti-lizers in Organic Vegetable Production. In: Organic Production of Vegetable Crops, Apple Academic Press, 215-244. https://doi.org/10.1201/9781003539049-10
[168]  Rodríguez-Rodríguez, Y., Soldevilla-Hernández, L.I., Guevara, M.á., Gandini, G. and Jáuregui-Haza, U.J. (2025) Assessment of a Sargassum-Based Liquid Biofertilizer for Enhanced Banana Cul-tivation in Small-Scale Family Farms. Case Studies in Chemical and Environmental Engineering, 12, Article 101252. https://doi.org/10.1016/j.cscee.2025.101252
[169]  Balkrishna, A., Kaushik, P., Singh, S., Agrahari, P., Kumar, B., Kumar, P., et al. (2025) Potential Use of Sewage Sludge as Fertilizer in Organic Farming. Cleaner Waste Systems, 10, Article 100245. https://doi.org/10.1016/j.clwas.2025.100245
[170]  Das, D., Riamei, M., Paul, P., Singh, N., Ingti, B., Sarkar, R.D., et al. (2025) Understanding the Role of Soil Microorganisms in Alleviating Hydric and Edaphic Stress towards Sustainable Agriculture. Discover Soil, 2, Article No. 47. https://doi.org/10.1007/s44378-025-00076-x
[171]  Padbhushan, R., Sinha, A.K., Bhattacharya, P.M., Poddar, P., Mitra, B. and Kumar, U. (2025) Partial Conservation Agriculture for Increasing Productivity and Profitability in Rice-Wheat System of the Sub-Himalayan Plains. International Journal of Plant Production, 19, 421-438. https://doi.org/10.1007/s42106-025-00344-4
[172]  Lotter, D. (2015) Facing Food Insecurity in Africa: Why, after 30 Years of Work in Organic Agriculture, I Am Promoting the Use of Synthetic Fertilizers and Herbicides in Small-Scale Staple Crop Production. Agriculture and Human Values, 32, 111-118. https://doi.org/10.1007/s10460-014-9547-x
[173]  Sakadzo, N., Kugedera, A.T., Ranganai, N. and Kokerai, L.K. (2025) Cassava: Practices and Technologies to Improve Food Security in Sub-Saharan Africa. Cogent Food & Agriculture, 11, Article 2518758. https://doi.org/10.1080/23311932.2025.2518758
[174]  Lesueur, D., Deaker, R., Herrmann, L., Bräu, L. and Jansa, J. (2016) The Production and Potential of Biofertilizers to Improve Crop Yields. In: Bioformulations: For Sustainable Agriculture, Springer, 71-92. https://doi.org/10.1007/978-81-322-2779-3_4
[175]  Palanisamy, S., Jayachandran, P.R., Eswaran, S., Balu, R.D., Senthilkumar, A. and Saravanavelan, G. (2025) Production Cost of Conventional Fertilizers and Nanofertilizers. In: Nanofertilizers for Sustainable Agriculture, Springer, 341-354. https://doi.org/10.1007/978-3-031-78649-5_14
[176]  Praveen, K.V. and Singh, A. (2019) Realizing the Potential of a Low-Cost Technology to Enhance Crop Yields: Evidence from a Meta-Analysis of Biofertilizers in India. Agricultural Econom-ics Research Review, 32, 77-91. https://doi.org/10.5958/0974-0279.2019.00018.1
[177]  Carvajal-Muñoz, J.S. and Car-mona-Garcia, C.E. (2012) Benefits and Limitations of Biofertilization in Agricultural Practices. Livestock Research for Rural Development, 24, 1-8.
[178]  Raimi, A., Roopnarain, A. and Adeleke, R. (2021) Biofertilizer Production in Africa: Current Status, Factors Impeding Adoption and Strategies for Success. Scientific African, 11, e00694. https://doi.org/10.1016/j.sciaf.2021.e00694
[179]  Raimi, A., Adeleke, R. and Roopnarain, A. (2017) Soil Fertility Chal-lenges and Biofertiliser as a Viable Alternative for Increasing Smallholder Farmer Crop Productivity in Sub-Saharan Africa. Cogent Food & Agriculture, 3, Article 1400933. https://doi.org/10.1080/23311932.2017.1400933
[180]  Pal, S., Singh, H.B., Farooqui, A. and Rakshit, A. (2015) Fungal Biofertilizers in Indian Agriculture: Perception, Demand and Promotion. Journal of Eco-Friendly Agriculture, 10, 101-113.
[181]  Sahoo, R.K., Bhardwaj, D. and Tuteja, N. (2012) Biofertilizers: A Sustainable Eco-Friendly Agricultural Approach to Crop Improvement. In: Plant Acclimation to Environmental Stress, Springer, 403-432. https://doi.org/10.1007/978-1-4614-5001-6_15
[182]  Bhattacharjee, R. and Dey, U. (2014) Bioferti-lizer, a Way towards Organic Agriculture: A Review. African Journal of Microbiology Research, 8, 2332-2343. https://doi.org/10.5897/ajmr2013.6374
[183]  Thomas, S. and Nandhini, D.M. (2019) A Study on the Farmers’ Awareness and Acceptance of Biofertilizers in Kottayam District. GIS Business, 14, 425-431. https://doi.org/10.26643/gis.v14i6.13572
[184]  Arjjumend, H., Koutouki, K. and Neufeld, S. (2021) Comparative Ad-vantage of Using Biofertilizers in Indian Agroecosystems: An Analysis from the Perspectives of Stakeholders. European Journal of Agriculture and Food Sciences, 3, 26-36. https://doi.org/10.24018/ejfood.2021.3.2.243
[185]  Mishra, B.K. and Barolia, S.K. (2020) Quality Assessment of Microbial Inoculants as Biofertilizer. International Journal of Current Microbiolo-gy and Applied Sciences, 9, 3715-3729. https://doi.org/10.20546/ijcmas.2020.910.428
[186]  Vassileva, M., Malusà, E., Sas-Paszt, L., Trzcinski, P., Galvez, A., Flor-Peregrin, E., et al. (2021) Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality. Microorganisms, 9, Article 1254. https://doi.org/10.3390/microorganisms9061254
[187]  García de Salamone, I.E., Esquivel-Cote, R., Hernández-Melchor, D.J. and Alarcón, A. (2019) Manufacturing and Quality Control of Inoculants from the Paradigm of Circular Agriculture. In: Microbial Interventions in Agriculture and Environment, Springer, 37-74. https://doi.org/10.1007/978-981-13-8383-0_2
[188]  Sahu, P.K. and Brahmaprakash, G.P. (2016) Formulations of Biofertilizers—Approaches and Advances. In: Microbial Inoculants in Sustainable Agricultural Productivity, Springer, 179-198. https://doi.org/10.1007/978-81-322-2644-4_12
[189]  Bharti, N. and Suryavanshi, M. (2021) Quality Control and Regulations of Biofertilizers: Current Scenario and Future Prospects. In: Biofertilizers, Elsevier, 133-141. https://doi.org/10.1016/b978-0-12-821667-5.00018-x
[190]  Ghosh, T.K., Singh, R.P., Duhan, J.S. and Yadav, D.S. (2001) A Review on Quality Control of Biofertilizer in India. The Fertiliser Association of India.
[191]  Tariq, M., Jameel, F., Ijaz, U., Abdullah, M. and Rashid, K. (2022) Biofertilizer Microorganisms Accompanying Pathogenic Attributes: A Potential Threat. Physiology and Molecular Biology of Plants, 28, 77-90. https://doi.org/10.1007/s12298-022-01138-y
[192]  Santos, M.S., Rodrigues, T.F., Nogueira, M.A. and Hungria, M. (2021) The Challenge of Combining High Yields with Environmentally Friendly Bioproducts: A Review on the Compatibility of Pesticides with Microbial Inoculants. Agronomy, 11, Article 870. https://doi.org/10.3390/agronomy11050870
[193]  Ahsan, M.L., Ali, A. and Ahmed, I. (2012) Biofertiliser: A Highly Potent Alternative to Chemical Fertilisers: Uses and Future Prospects. Journal of Chemical Engineering and Biological Sciences, 6, 10-23.
[194]  Rajanna, G.A., Dass, A., Suman, A., Babu, S., Venkatesh, P., Singh, V., et al. (2022) Co-Implementation of Tillage, Irrigation, and Fertilizers in Soybean: Impact on Crop Productivity, Soil Moisture, and Soil Microbial Dynamics. Field Crops Research, 288, Article 108672. https://doi.org/10.1016/j.fcr.2022.108672
[195]  Ikan, C., Soussani, F., Ouhaddou, R., Ech-Chatir, L., Errouh, F., Boutasknit, A., et al. (2024) Use of Biofertilizers as an Effective Management Strategy to Improve the Photosynthetic Apparatus, Yield, and Tolerance to Drought Stress of Drip-Irrigated Wheat in Semi-Arid Environments. Agronomy, 14, Article 1316. https://doi.org/10.3390/agronomy14061316
[196]  Dzvene, A.R. and Chiduza, C. (2024) Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria, 3, 271-286. https://doi.org/10.3390/bacteria3040018
[197]  Herrmann, L. and Lesueur, D. (2013) Challenges of Formula-tion and Quality of Biofertilizers for Successful Inoculation. Applied Microbiology and Biotechnology, 97, 8859-8873. https://doi.org/10.1007/s00253-013-5228-8
[198]  Pirttilä, A.M., Mohammad Parast Tabas, H., Baruah, N. and Koskimäki, J.J. (2021) Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms, 9, Article 817. https://doi.org/10.3390/microorganisms9040817
[199]  Adesemoye, A.O. and Egamberdieva, D. (2013) Beneficial Effects of Plant Growth-Promoting Rhizobacteria on Improved Crop Production: Pro-spects for Developing Economies. In: Bacteria in Agrobiology: Crop Productivity, Springer, 45-63. https://doi.org/10.1007/978-3-642-37241-4_2
[200]  Egamberdieva, D. and Adesemoye, A.O. (2016) Improvement of Crop Protection and Yield in Hostile Agroecological Conditions with PGPR-Based Biofertilizer Formulations. In: Bioformula-tions: For Sustainable Agriculture, Springer, 199-211. https://doi.org/10.1007/978-81-322-2779-3_11
[201]  Singh, M., Singh, D., Gupta, A., Pandey, K.D., Singh, P.K. and Kumar, A. (2019) Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. In: PGPR Amelioration in Sustainable Agriculture, Woodhead Publishing, 41-66.
[202]  Mulugeta, M., Gelaw, T.A. and Rabuma, T. (2025) The Dynamic Interplay between Rhizospheric Microorgan-isms and Plant Health: Implications for Enhancing Growth and Stress Resilience in Sustainable Agriculture. Journal of Plant Nutrition, 1-31. https://doi.org/10.1080/01904167.2025.2509131
[203]  de Oliveira, K.S., Volsi, B., Telles, T.S., Mendes, A.D.R., Yunes, J.S. and Andrade, D.S. (2024) Co-Inoculation with Rhizobium, Azospirillum, and Microalgae Increases Com-mon Bean Yield and Profitability. Agronomy Journal, 117, e21719. https://doi.org/10.1002/agj2.21719
[204]  Horácio, E.H., Montagner Souza, T., Catarino, P., Silva, B., Yunes, J.S., Zucareli, C., et al. (2024) Co-Inoculation of Cyanobacteria, Rhi-zobia, and Azospirilla Associated with Fertilizer N Increases the Common Bean Grain Yield. Journal of Plant Nutrition, 48, 1166-1180. https://doi.org/10.1080/01904167.2024.2422587
[205]  Kolapo, A., Ojo, T.O., Khumalo, N.Z., Elhindi, K.M., Kassem, H.S. and Filusi, O.J. (2025) Enhancing Land Nutrient through Rhizobia Biofertilization: Modeling the Joint Effects of Rhizobium Inoculants and Improved Soybean Varieties on Soybean Productivity in North Central, Nigeria. Frontiers in Sus-tainable Food Systems, 9, Article 1509230. https://doi.org/10.3389/fsufs.2025.1509230
[206]  Rai, S., Datta, B., Ahmed, S., Dahal, N. and Kumar, R. (2025) Climate Change and Agroecosystems: The Unseen Consequences on Microbes and Soil Microbial Diversity. In: Plant-Microbiome Interactions for Climate-Resilient Agriculture, Springer, 41-72. https://doi.org/10.1007/978-981-96-3534-4_3
[207]  Pei, B., Liu, T., Xue, Z., Cao, J., Zhang, Y., Yu, M., et al. (2025) Effects of Biofertilizer on Yield and Quality of Crops and Properties of Soil under Field Conditions in China: A Meta-Analysis. Agri-culture, 15, Article 1066. https://doi.org/10.3390/agriculture15101066
[208]  Lahijanian, S., Schmidt, J., Feuerstein, U. and Polle, A. (2025) Effects of Cover Crops and Microbial Inoculants in Different Farming Systems on Soil Microbial Com-munities and Yield of Maize. Biology and Fertility of Soils, 1-18. https://doi.org/10.1007/s00374-025-01929-x
[209]  Bose, P., Ray, M., Patra, P.K., Dasgupta, S., Saha, K., Sen, A., et al. (2025) Different Organic and Inorganic Sources of Plant Nutri-ents Influence Soil Health, Leading to Improve the Productivity and Profitability of a Fourteen-Year Long-Term Rice-Potato–Groundnut Cropping Pattern. Applied and Environmental Soil Science, 2025, Article 9943996. https://doi.org/10.1155/aess/9943996
[210]  Silva, A.B.P., Borges, L.F.S., Lucini, F., Silva, G.N. and Santos, E.F. (2025) Technologies in Agronomic Biofortification with Zinc in Brazil: A Review. Plants, 14, Article 1828. https://doi.org/10.3390/plants14121828

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133