Biofertilizers present a viable solution for enhancing soil fertility, improving plant nutrition, and advancing environmental sustainability in agriculture and forest ecosystems. These microorganism-based fertilizers not only supply essential nutrients to plants but also foster soil health, thereby reducing reliance on synthetic fertilizers. This review highlights various types of biofertilizers, such as mycorrhizal fungi, rhizobia, and compost, and examines their mechanisms of action and applications in sustainable agricultural and forestry practices. The potential benefits of biofertilizers include increased crop yields, enhanced soil carbon sequestration, improved biodiversity, and the promotion of forest health and resilience. However, challenges such as limited availability, standardization issues, and the need for integration with conventional practices must be addressed to maximize their effectiveness. Future research directions should focus on scaling up biofertilizer production, developing innovative formulations, and understanding the interactions between biofertilizers and soil microbial communities. By promoting the adoption of biofertilizers, we can contribute to environmentally friendly and socially responsible food systems, ultimately ensuring food security while preserving ecological balance. This review emphasizes the importance of collaborative efforts among researchers, farmers, and policymakers to integrate biofertilizers into sustainable practices, paving the way for a resilient agricultural and forest landscape that meets the needs of a growing population while safeguarding the environment for future generations.
Cite this paper
Ntsomboh-Ntsefong, G. , Gabriel, M. S. T. , Namuene, K. S. , Mélanie, D. T. C. and Kingsley, T. M. (2025). Biofertilizers: An Integrated Approach to Improving Soil Fertility, Plant Nutrition, Forest and Environmental Sustainability. Open Access Library Journal, 12, e13141. doi: http://dx.doi.org/10.4236/oalib.1113141.
Gu, D., Andreev, K. and Dupre, M.E. (2021) Major Trends in Population Growth around the World. China CDC Weekly, 3, 604-613. https://doi.org/10.46234/ccdcw2021.160
Lal, R. (2016) Feeding 11 Billion on 0.5 Billion Hectare of Area under Cereal Crops. Food and Energy Security, 5, 239-251. https://doi.org/10.1002/fes3.99
Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677. https://doi.org/10.1038/nature01014
Tripathi, S., Srivastava, P., Devi, R.S. and Bhadouria, R. (2020) Influence of Synthetic Fertilizers and Pesticides on Soil Health and Soil Microbiology. In: Agrochemicals Detection, Treatment and Remediation, Elsevier, 25-54. https://doi.org/10.1016/b978-0-08-103017-2.00002-7
Hossain, M.E., Shahrukh, S. and Hossain, S.A. (2022) Chemical Fertilizers and Pesticides: Impacts on Soil Degradation, Groundwater, and Human Health in Bangladesh. In: Water Science and Technology Library, Springer, 63-92. https://doi.org/10.1007/978-3-030-95542-7_4
Sarkar, S., Jaswal, A. and Singh, A. (2024) Sources of Inorganic Nonmetallic Contaminants (Synthetic Fertilizers, Pesticides) in Agricultural Soil and Their Impacts on the Adjacent Ecosys-tems. In: Bioremediation of Emerging Contaminants from Soils, Elsevier, 135-161. https://doi.org/10.1016/b978-0-443-13993-2.00007-4
Allen, P., Van Dusen, D., Lundy, J. and Gliessman, S. (1991) Integrating Social, Environmental, and Economic Issues in Sustainable Agriculture. American Journal of Alternative Agri-culture, 6, 34-39. https://doi.org/10.1017/s0889189300003787
Adisa, O., Ilugbusi, B.S., Adelekan, O.A., Asuzu, O.F. and Ndubuisi, N.L. (2024) A Comprehensive Review of Redefining Agricultural Economics for Sustainable Development: Overcoming Challenges and Seizing Opportunities in a Changing World. World Journal of Advanced Research and Reviews, 21, 2329-1241. https://doi.org/10.30574/wjarr.2024.21.1.0322
Power, A.G. (2010) Ecosystem Services and Agri-culture: Tradeoffs and Synergies. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2959-2971. https://doi.org/10.1098/rstb.2010.0143
Rehman, A., Farooq, M., Lee, D.J. and Siddique, K.H.M. (2022) Sustainable Agricultural Practices for Food Security and Ecosystem Services. Environmental Science and Pollution Research, 29, 84076-84095. https://doi.org/10.1007/s11356-022-23635-z
Arintyas, A.P.R.D.A. (2024) Women, Agriculture, and Villages: A Community of Empowerment Study to Achieve Wellbeing and Sus-tainable Development. Journal of Agrosociology and Sustainability, 2, 1-16. https://doi.org/10.61511/jassu.v2i1.2024.887
Li, M., Li, J., Haq, S.U. and Nadeem, M. (2024) Agriculture Land Use Transformation: A Threat to Sustainable Food Production Systems, Rural Food Security, and Farmer Well-Being? PLOS ONE, 19, e0296332. https://doi.org/10.1371/journal.pone.0296332
Nasser Salifu, G.A. (2025) Synergies and Trade-Offs of Sustainable Agricultural Practices for Improved Food Security in a Developing Country: A Systematic Review. Cogent Food & Agriculture, 11, Article 2518218. https://doi.org/10.1080/23311932.2025.2518218
IPCC (2019) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Man-agement, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems.
Schlaepfer, M.A. and Lawler, J.J. (2023) Conserving Biodiversity in the Face of Rapid Climate Change Requires a Shift in Priorities. WIREs Climate Change, 14, e798. https://doi.org/10.1002/wcc.798
ROSALES, J. (2008) Economic Growth, Climate Change, Biodiversity Loss: Distribu-tive Justice for the Global North and South. Conservation Biology, 22, 1409-1417. https://doi.org/10.1111/j.1523-1739.2008.01091.x
Sharma, B., Ti-wari, S., Kumawat, K.C. and Cardinale, M. (2023) Nano-Biofertilizers as Bio-Emerging Strategies for Sustainable Agriculture Development: Potentiality and Their Limitations. Science of the Total Environment, 860, Article 160476. https://doi.org/10.1016/j.scitotenv.2022.160476
Chaudhary, P., Singh, S., Chaudhary, A., Sharma, A. and Kumar, G. (2022) Overview of Biofertilizers in Crop Production and Stress Management for Sustainable Agriculture. Frontiers in Plant Science, 13, Article 930340. https://doi.org/10.3389/fpls.2022.930340
Abbey, L., Abbey, J., Leke‐Aladekoba, A., Iheshiulo, E.M.A. and Ijenyo, M. (2019) Biopesticides and Biofertilizers: Types, Production, Benefits, and Utilization. In: By-products from Agriculture and Fisheries: Adding Value for Food, Feed, Pharma, and Fuels, Wiley, 479-500.
Singh, S.K., Pachauri, R.K., Khatoon, H., Katiyar, D. and Agnihotri, G. (2025) The Role of Biofertilizers in Enhancing Soil and Productivity—A Review. International Journal of Plant & Soil Science, 37, 141-161. https://doi.org/10.9734/ijpss/2025/v37i35355
Al Tawaha, A.R.M., Karnwal, A., Pati, S., Al-Tawaha, A.R., Upadhyay, A.K., Singh, A., et al. (2025) Biofertilizers: A Sustainable Solution for Enhancing Soil Fertility and Crop Productivity. In: Sus-tainable Agriculture under Drought Stress, Elsevier, 209-217. https://doi.org/10.1016/b978-0-443-23956-4.00014-4
Figiel, S., Rusek, P., Ryszko, U. and Brodowska, M.S. (2025) Microbially Enhanced Biofertilizers: Technologies, Mechanisms of Action, and Agricultural Applications. Agronomy, 15, Ar-ticle 1191. https://doi.org/10.3390/agronomy15051191
Bhardwaj, D., Ansari, M.W., Sahoo, R.K. and Tuteja, N. (2014) Biofertilizers Function as Key Player in Sustainable Agriculture by Improving Soil Fertility, Plant Tolerance and Crop Productivity. Microbial Cell Factories, 13, Article No. 66. https://doi.org/10.1186/1475-2859-13-66
Kumar, M.S., Reddy, G.C., Phogat, M. and Korav, S. (2018) Role of Bio-Fertilizers towards Sustainable Agricultural Development: A Re-view. Journal of Pharmacognosy and Phytochemistry, 7, 1915-1921.
Nabati, J., Nezami, A., Yousefi, A., Oskoueian, E., Oskoueian, A. and Ahmadi-Lahijani, M.J. (2025) Biofertilizers Containing Plant Growth Promoting Rhizobacteria Enhance Nutrient Uptake and Improve the Growth and Yield of Chickpea Plants in an Arid Environment. Scientific Reports, 15, Arti-cle No. 8331. https://doi.org/10.1038/s41598-025-93070-w
Etesami, H. (2025) Unveiling a Hidden Synergy: Em-powering Biofertilizers for Enhanced Plant Growth with Silicon in Stressed Agriculture. Plant, Cell & Environment, 48, 2411-2433. https://doi.org/10.1111/pce.15300
Mahapatra, D.M., Satapathy, K.C. and Panda, B. (2022) Biofertilizers and Nanofertilizers for Sustainable Agriculture: Phycoprospects and Challenges. Science of the Total Environment, 803, Article 149990. https://doi.org/10.1016/j.scitotenv.2021.149990
Alnaass, N.S., Agil, H.K., Alyaseer, N.A., Abubaira, M. and Ibra-him, H.K. (2023) The Effect of Biofertilization on Plant Growth and Its Role in Reducing Soil Pollution Problems with Chem-ical Fertilizers. African Journal of Advanced Pure and Applied Sciences, 2, 387-400.
Baweja, P., Kumar, S. and Kumar, G. (2020) Fertilizers and Pesticides: Their Impact on Soil Health and Environment. In: Soil Biology, Springer, 265-285. https://doi.org/10.1007/978-3-030-44364-1_15
Kumar, S., Sindhu, S.S. and Kumar, R. (2022) Biofertilizers: An Ecofriendly Technology for Nutrient Recycling and Environmental Sustainability. Current Research in Microbial Sciences, 3, Article 100094. https://doi.org/10.1016/j.crmicr.2021.100094
Mącik, M., Gryta, A. and Frąc, M. (2020) Biofertiliz-ers in Agriculture: An Overview on Concepts, Strategies and Effects on Soil Microorganisms. Advances in Agronomy, 162, 31-87. https://doi.org/10.1016/bs.agron.2020.02.001
Azim, K., Soudi, B., Boukhari, S., Perissol, C., Roussos, S. and Thami Alami, I. (2017) Composting Parameters and Compost Quality: A Literature Review. Organic Agriculture, 8, 141-158. https://doi.org/10.1007/s13165-017-0180-z
Mohammadi, K., Khalesro, S., Sohrabi, Y. and Heidari, G. (2011) A Review: Beneficial Effects of the Mycorrhizal Fungi for Plant Growth. Journal of Applied Environmental and Biological Sci-ences, 1, 310-319.
Bhantana, P., Rana, M.S., Sun, X., Moussa, M.G., Saleem, M.H., Syaifudin, M., et al. (2021) Arbuscular Mycorrhizal Fungi and Its Major Role in Plant Growth, Zinc Nutrition, Phosphorous Regulation and Phytoremediation. Symbiosis, 84, 19-37. https://doi.org/10.1007/s13199-021-00756-6
Ahmed, N., Li, J., Li, Y., Deng, L., Deng, L., Chachar, M., et al. (2025) Symbiotic Synergy: How Arbuscular Mycorrhizal Fungi Enhance Nutrient Up-take, Stress Tolerance, and Soil Health through Molecular Mechanisms and Hormonal Regulation. IMA Fungus, 16, e144989. https://doi.org/10.3897/imafungus.16.144989
George, E. and Marschner, H. (1996) Nutrient and Water Uptake by Roots of Forest Trees. Zeitschrift für Pflanzenernährung und Bodenkunde, 159, 11-21. https://doi.org/10.1002/jpln.1996.3581590103
Zhang, Z., Zhang, J., Xu, G., Zhou, L. and Li, Y. (2018) Arbuscular Mycorrhizal Fungi Improve the Growth and Drought Tolerance of Zenia Insignis Seedlings under Drought Stress. New For-ests, 50, 593-604. https://doi.org/10.1007/s11056-018-9681-1
Salto, C.S., Sagadin, M.B., Luna, C.M., Oberschelp, G.P.J., Harrand, L. and Cabello, M.N. (2020) Interactions between Mineral Fertilization and Arbuscular Mycorrhizal Fungi Improve Nursery Growth and Drought Tolerance of Prosopis Alba Seedlings. Agroforestry Systems, 94, 103-111. https://doi.org/10.1007/s10457-019-00371-x
Plenchette, C., Clermont-Dauphin, C., Meynard, J.M. and Fortin, J.A. (2005) Managing Arbuscular Mycorrhizal Fungi in Cropping Systems. Canadian Journal of Plant Science, 85, 31-40. https://doi.org/10.4141/p03-159
Dagher, D., Taskos, D., Mourouzidou, S. and Monokrou-sos, N. (2025) Microbial-enhanced Abiotic Stress Tolerance in Grapevines: Molecular Mechanisms and Synergistic Effects of Arbuscular Mycorrhizal Fungi, Plant Growth-Promoting Rhizobacteria, and Endophytes. Horticulturae, 11, Article 592. https://doi.org/10.3390/horticulturae11060592
Emmanuel, O.C. and Babalola, O.O. (2020) Productivity and Qual-ity of Horticultural Crops through Co-Inoculation of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Bacteria. Microbiological Research, 239, Article 126569. https://doi.org/10.1016/j.micres.2020.126569
Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., et al. (2015) Arbuscular Mycorrhizal Fungi Act as Biostimulants in Horticultural Crops. Scientia Horticulturae, 196, 91-108. https://doi.org/10.1016/j.scienta.2015.09.002
Zhu, B., Gao, T., Zhang, D., Ding, K., Li, C. and Ma, F. (2022) Func-tions of Arbuscular Mycorrhizal Fungi in Horticultural Crops. Scientia Horticulturae, 303, Article 111219. https://doi.org/10.1016/j.scienta.2022.111219
Baum, C., El-Tohamy, W. and Gruda, N. (2015) Increasing the Productivity and Product Quality of Vegetable Crops Using Arbuscular Mycorrhizal Fungi: A Review. Scientia Horticulturae, 187, 131-141. https://doi.org/10.1016/j.scienta.2015.03.002
Kumar, N., Srivastava, P., Vishwakarma, K., Kumar, R., Kuppala, H., Maheshwari, S.K., et al. (2020) The Rhizobium–Plant Symbiosis: State of the Art. In: Plant Microbe Symbio-sis, Springer, 1-20. https://doi.org/10.1007/978-3-030-36248-5_1
Wang, E.T., Tian, C.F., Chen, W.F., Young, J.P.W., Chen, W.X. and Wang, E.T. (2019) Symbiosis between Rhizobia and Legumes. In: Ecology and Evolution of Rhizobia: Princi-ples and Applications, Springer, 3-19.
Zahran, H.H. (1999) Rhizobium-Legume Symbiosis and Nitrogen Fixation un-der Severe Conditions and in an Arid Climate. Microbiology and Molecular Biology Reviews, 63, 968-989. https://doi.org/10.1128/mmbr.63.4.968-989.1999
Mabrouk, Y., Hemissi, I., Salem, I.B., Mejri, S., Saidi, M. and Bel-hadj, O. (2018) Potential of Rhizobia in Improving Nitrogen Fixation and Yields of Legumes. Symbiosis, 107, 1-16. https://doi.org/10.5772/intechopen.73495
Yadegari, M., Rahmani, H.A., Noormohammadi, G. and Ayneband, A. (2010) Plant Growth Promoting Rhizobacteria Increase Growth, Yield and Nitrogen Fixation Inphaseolus Vulgaris. Journal of Plant Nutrition, 33, 1733-1743. https://doi.org/10.1080/01904167.2010.503776
Allito, B.B., Nana, E.M. and Alemneh, A.A. (2015) Rhizobia Strain and Legume Genome Interaction Effects on Nitrogen Fixation and Yield of Grain Legume: A Review. Molecular Soil Biology, 6, 1-6.
Sindhu, S.S., Sharma, R., Sindhu, S. and Sehrawat, A. (2019) Soil Fertility Improvement by Symbiotic Rhizobia for Sustainable Agriculture. In: Soil Fertility Management for Sustainable De-velopment, Springer, 101-166. https://doi.org/10.1007/978-981-13-5904-0_7
Yuvaraj, M., Pandiyan, M. and Gayathri, P. (2020) Role of Legumes in Improving Soil Fertility Status. In: Legume Crops-Prospects, Pro-duction and Uses, IntechOpen, 16-27.
Insam, H., Klammsteiner, T. and Gómez-Brandòn, M. (2023) Biology of Com-post. In: Encyclopedia of Soils in the Environment, Elsevier, 522-532. https://doi.org/10.1016/b978-0-12-822974-3.00178-6
Sánchez, ó.J., Ospina, D.A. and Montoya, S. (2017) Com-post Supplementation with Nutrients and Microorganisms in Composting Process. Waste Management, 69, 136-153. https://doi.org/10.1016/j.wasman.2017.08.012
Insam, H. and de Bertoldi, M. (2007) Microbiology of the Compost-ing Process. In: Waste Management Series, Elsevier, 25-48. https://doi.org/10.1016/s1478-7482(07)80006-6
Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., et al. (2020) Role of Organic Fertilizers in Improving Soil Fertility. In: Contaminants in Agriculture, Springer, 61-77. https://doi.org/10.1007/978-3-030-41552-5_3
Arden-Clarke, C. and Hodges, R.D. (1988) The Environmen-tal Effects of Conventional and Organic/Biological Farming Systems. II. Soil Ecology, Soil Fertility and Nutrient Cycles. Biolog-ical Agriculture & Horticulture, 5, 223-287. https://doi.org/10.1080/01448765.1988.9755147
Singha, R. and Singha, S. (2024) Composting for a Sustainable Future: Turning Waste into Nutrient-Rich Soil. In: Water-Soil-Plant-Animal Nexus in the Era of Climate Change, IGI Global, 279-297.
Bremaghani, A. (2024) Utilization of Organic Waste in Compost Fertilizer Production: Implications for Sustainable Agriculture and Nutrient Management. Law and Economics, 18, 86-98.
Billah, M., Khan, M., Bano, A., Hassan, T.U., Munir, A. and Gurmani, A.R. (2019) Phosphorus and Phosphate Solubilizing Bacteria: Keys for Sustainable Agriculture. Geomicrobiology Journal, 36, 904-916. https://doi.org/10.1080/01490451.2019.1654043
Khan, A.A., Jilani, G., Akhtar, M.S., Naqvi, S.M.S. and Rasheed, M. (2009) Phosphorus Solubilizing Bacteria: Occurrence, Mechanisms and Their Role in Crop Production. Journal of Agricul-ture and Biological Sciences, 1, 48-58.
Tian, J., Ge, F., Zhang, D., Deng, S. and Liu, X. (2021) Roles of Phosphate Solubilizing Microorganisms from Managing Soil Phosphorus Deficiency to Mediating Biogeochemical P Cycle. Biology, 10, Article 158. https://doi.org/10.3390/biology10020158
Jnawali, A.D., Ojha, R.B. and Marahatta, S. (2015) Role of Azotobacter in Soil Fertility and Sustainability: A Review. Advances in Plants and Agriculture Research, 2, 1-5.
Sumbul, A., Ansari, R.A., Rizvi, R. and Mahmood, I. (2020) Azotobacter: A Potential Bio-Fertilizer for Soil and Plant Health Management. Saudi Journal of Biological Sciences, 27, 3634-3640. https://doi.org/10.1016/j.sjbs.2020.08.004
Aasfar, A., Bargaz, A., Yaakoubi, K., Hilali, A., Bennis, I., Zeroual, Y., et al. (2021) Nitrogen Fixing Azotobacter Species as Potential Soil Biological Enhancers for Crop Nutrition and Yield Stability. Frontiers in Microbiology, 12, Article 628379. https://doi.org/10.3389/fmicb.2021.628379
Saha, S., Paul, D., Poudel, T.R., Basunia, N.M., Hasan, T., Hasan, M., et al. (2023) Biofertilizer Science and Practice for Agriculture and Forestry: A Review. Journal of Applied Biology & Biotechnology, 11, 31-44. https://doi.org/10.7324/jabb.2023.148741
Singh, S., Singh, R.J., Kumar, K., Singh, B. and Shukla, L. (2013) Biofertilizers and Green Manuring for Sustainable Agriculture. In: Modern Technologies for Sustainable Agriculture, 129-150.
Santos, F., Melkani, S., Oliveira-Paiva, C., Bini, D., Pavuluri, K., Gatiboni, L., et al. (2024) Biofertilizer Use in the United States: Definition, Regulation, and Prospects. Applied Microbiology and Biotechnology, 108, 1-16. https://doi.org/10.1007/s00253-024-13347-4
Sethi, G., Behera, K.K., Sayyed, R., Adarsh, V., Sipra, B.S., Singh, L., et al. (2025) Enhancing Soil Health and Crop Productivity: The Role of Zinc-Solubilizing Bacteria in Sustainable Agriculture. Plant Growth Regulation, 105, 601-617. https://doi.org/10.1007/s10725-025-01294-7
Kobua, C.K., Wang, Y. and Jou, Y. (2025) Exploring the Roles of Plant Growth-Promoting Rhizobacteria (PGPR) and Alternate Wetting and Drying (AWD) in Sustainable Rice Cultivation. Soil Systems, 9, Article 61. https://doi.org/10.3390/soilsystems9020061
Yeremko, L., Czopek, K., Staniak, M., Marenych, M. and Hanhur, V. (2025) Role of Environmental Factors in Legume-Rhizobium Symbiosis: A Review. Biomolecules, 15, Article 118. https://doi.org/10.3390/biom15010118
Jaiswal, S.K. and Dakora, F.D. (2025) Maximizing Photosynthesis and Plant Growth in African Legumes through Rhizobial Partnerships: The Road behind and Ahead. Microorganisms, 13, Article 581. https://doi.org/10.3390/microorganisms13030581
Singla, P. and Garg, N. (2017) Plant Flavonoids: Key Players in Signaling, Establishment, and Regulation of Rhizobial and Mycorrhizal Endosymbioses. In: Mycorrhiza—Function, Diversity, State of the Art, Springer, 133-176. https://doi.org/10.1007/978-3-319-53064-2_8
Skorupska, A., Kidaj, D. and Wielbo, J. (2017) Flavonoids and Nod Factors: Importance in Legume-Microbe Interactions and Legume Improvement. In: Microbes for Legume Improvement, Springer, 75-94. https://doi.org/10.1007/978-3-319-59174-2_3
Bashan, Y. and de-Bashan, L.E. (2010) How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment. Advances in Agronomy, 108, 77-136. https://doi.org/10.1016/s0065-2113(10)08002-8
Cassán, F., Vanderleyden, J. and Spaepen, S. (2014) Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. Journal of Plant Growth Regulation, 33, 440-459. https://doi.org/10.1007/s00344-013-9362-4
Ercole, T.G., Bonotto, D.R., Hungria, M., Kava, V.M. and Galli, L.V. (2025) The Role of Endophytic Bacteria in Enhancing Plant Growth and Health for Sustainable Agriculture. Antonie van Leeuwenhoek, 118, Article No. 88. https://doi.org/10.1007/s10482-025-02100-0
Pooja, P., Tallapragada, S., Saini, S., Punia, S., Janaagal, M., Kumar, V., et al. (2025) Exploring the Potential of Arbuscular Mycorrhizal Fungi as Biofertilizers to Enhance Growth, Nutrient Acquisition and Yield in Chickpea Genotypes under Salinity Stress. Journal of Soil Science and Plant Nutrition, 1-16. https://doi.org/10.1007/s42729-025-02497-7
Ishaq, L.F., Amalia, F.C., Benggu, Y.I., Tae, A.S.J.A. and Airthur, M.M. (2025) The Potential of Arbuscular Mycorrhizal Fungi as Biofertilizer to Reduce Chemical Ferti-lizer Use in Calcareous Soil. IOP Conference Series: Earth and Environmental Science, 1482, Article 012015. https://doi.org/10.1088/1755-1315/1482/1/012015
Abdelhameid, N.M., Niel, E. and Sary, D. (2025) Integrated Use of Biofertilizers, Compost, and Mineral Fertilizers to Improve Wheat Productivity and Soil Fertility in Calcareous Soils. Alexandria Science Exchange Journal, 46, 285-301. https://doi.org/10.21608/asejaiqjsae.2025.423958
Hoffman, B.M., Lukoyanov, D., Yang, Z., Dean, D.R. and Seefeldt, L.C. (2014) Mechanism of Nitrogen Fixation by Nitrogenase: The Next Stage. Chemical Reviews, 114, 4041-4062. https://doi.org/10.1021/cr400641x
Ramos Cabrera, E.V., Delgado Espinosa, Z.Y. and Solis Pino, A.F. (2024) Use of Phosphorus-Solubilizing Microorganisms as a Biotechnological Alternative: A Review. Microorganisms, 12, Article 1591. https://doi.org/10.3390/microorganisms12081591
Timofeeva, A.M., Galyamova, M.R. and Sedykh, S.E. (2024) How Do Plant Growth-Promoting Bacteria Use Plant Hormones to Regulate Stress Reactions? Plants, 13, Article 2371. https://doi.org/10.3390/plants13172371
Oyedele, A.O., Ezaka, E. and Taiwo, L.B. (2024) Microbial Biosynthesis of the Classical Phytohormones by Plant Growth-Promoting Microorganisms in Plants. In: Microbial Biostimulants for Plant Growth and Abiotic Stress Amelioration, Elsevier, 345-366. https://doi.org/10.1016/b978-0-443-13318-3.00004-5
Rani, N. and Sagar, N.A. (2024) Metabolomics: A Paradigm Shift in Understanding Biofertilizers Dynamics. In: Metabolomics, Proteomics and Gene Editing Approaches in Biofertilizer Industry, Springer, 35-51. https://doi.org/10.1007/978-981-97-2910-4_3
Kumar, R., Kumar, A. and Saikia, P. (2022) Deforestation and Forests Degradation Impacts on the Environ-ment. In: Environmental Degradation: Challenges and Strategies for Mitigation, Springer, 19-46.
Nosheen, S., Ajmal, I. and Song, Y. (2021) Microbes as Biofertilizers, a Potential Approach for Sustainable Crop Production. Sustainability, 13, Article 1868. https://doi.org/10.3390/su13041868
Usharani, K.V., Roopashree, K.M. and Naik, D. (2019) Role of Soil Physical, Chemical and Biological Properties for Soil Health Improvement and Sustainable Agriculture. Journal of Phar-macognosy and Phytochemistry, 8, 1256-1267.
Ghimirey, V., Chaurasia, J., Acharya, N., Dhungana, R. and Chaurasiya, S. (2024) Biofertilizers: A Sustainable Strategy for Enhancing Physical, Chemical, and Biological Properties of Soil. Innova-tions in Agriculture, 7, 1-11. https://doi.org/10.3897/ia.2024.128697
Saha, L. and Bauddh, K. (2020) Sustainable Agricultural Approaches for Enhanced Crop Productivity, Better Soil Health, and Improved Ecosystem Services. In: Ecologi-cal and Practical Applications for Sustainable Agriculture, Springer, 1-23. https://doi.org/10.1007/978-981-15-3372-3_1
Mahmud, A.A., Upadhyay, S.K., Srivastava, A.K. and Bhojiya, A.A. (2021) Biofertilizers: A Nexus between Soil Fertility and Crop Productivity under Abiotic Stress. Current Research in Envi-ronmental Sustainability, 3, Article 100063. https://doi.org/10.1016/j.crsust.2021.100063
Schütz, L., Gattinger, A., Meier, M., Müller, A., Boller, T., Mäder, P., et al. (2018) Improving Crop Yield and Nutrient Use Efficiency via Biofertiliza-tion—A Global Meta-Analysis. Frontiers in Plant Science, 8, Article 2204. https://doi.org/10.3389/fpls.2017.02204
Asoegwu, C.R., Awuchi, C.G., Nelson, K.C.T., Orji, C.G., Nwosu, O.U., Eg-bufor, U.C. and Awuchi, C.G. (2020) A Review on the Role of Biofertilizers in Reducing Soil Pollution and Increasing Soil Nu-trients. Himalayan Journal of Agriculture, 1, 34-38.
Suhag, M. (2016) Potential of Biofertilizers to Replace Chemical Fertilizers. International Advanced Research Journal in Science, Engineering and Technology, 3, 163-167.
Dębska, B., Długosz, J., Piotrowska-Długosz, A. and Banach-Szott, M. (2016) The Impact of a Bio-Fertilizer on the Soil Organic Matter Status and Carbon Sequestration—Results from a Field-Scale Study. Journal of Soils and Sediments, 16, 2335-2343. https://doi.org/10.1007/s11368-016-1430-5
Dejene, D. and Tilahun, E. (2019) Role of Biochar on Soil Fertility Im-provement and Greenhouse Gases Sequestration. Horticulture International Journal, 3, 291-298. https://doi.org/10.15406/hij.2019.03.00144
Sarfraz, R., Hussain, A., Sabir, A., Ben Fekih, I., Ditta, A. and Xing, S. (2019) Role of Biochar and Plant Growth Promoting Rhizobacteria to Enhance Soil Carbon Sequestration—A Review. Envi-ronmental Monitoring and Assessment, 191, Article No. 251. https://doi.org/10.1007/s10661-019-7400-9
Dal Cortivo, C., Ferrari, M., Visioli, G., Lauro, M., Fornasier, F., Barion, G., et al. (2020) Effects of Seed-Applied Biofertilizers on Rhizosphere Biodiversity and Growth of Common Wheat (Triticum aestivum L.) in the Field. Frontiers in Plant Science, 11, Article 72. https://doi.org/10.3389/fpls.2020.00072
Mori, A.S., Lertzman, K.P. and Gustafsson, L. (2016) Biodiver-sity and Ecosystem Services in Forest Ecosystems: A Research Agenda for Applied Forest Ecology. Journal of Applied Ecology, 54, 12-27. https://doi.org/10.1111/1365-2664.12669
Wang, L., Wei, F., Tagesson, T., Fang, Z. and Svenning, J. (2025) Transforming Forest Management through Rewilding: Enhancing Biodiversity, Resilience, and Biosphere Sustaina-bility under Global Change. One Earth, 8, Article 101195. https://doi.org/10.1016/j.oneear.2025.101195
Mori, A.S., Suzuki, K.F., Soga, M., Ota, T., Hisano, M., Arata, Y., et al. (2025) Assessing the Priorities of Stakeholders Regarding Forest Ecosystem Services in Japan. Journal of Applied Ecology, 62, 753-760. https://doi.org/10.1111/1365-2664.70008
Mori, A.S., Spies, T.A., Sudmeier-Rieux, K. and Andrade, A. (2013) Re-framing Ecosystem Management in the Era of Climate Change: Issues and Knowledge from Forests. Biological Conservation, 165, 115-127. https://doi.org/10.1016/j.biocon.2013.05.020
Pathak, V.M., Rana, N., Pandey, S., Sarkar, A.K., Chauhan, A., Jindal, T., et al. (2024) Exploration of Extremophiles: Potential Applications in Agriculture and Soil Health Improvement Utilizing Extremophiles. In: Extremophiles for Sustainable Agriculture and Soil Health Improvement, Springer, 91-119. https://doi.org/10.1007/978-3-031-70203-7_5
Devi, R., Kaur, T., Negi, R., Sharma, B., Chowdhury, S., Kapoor, M., et al. (2024) Biodiversity, Mechanisms, and Potential Biotechnological Applications of Minerals Solubilizing Extremophilic Microbes: A Review. Journal of Applied Biology & Biotechnology, 12, 23-40. https://doi.org/10.7324/jabb.2024.159821
Tiwari, P., Bose, S.K., Park, K., Dufossé, L. and Fouillaud, M. (2024) Plant-Microbe Interactions under the Extreme Habitats and Their Potential Applications. Microorganisms, 12, Article 448. https://doi.org/10.3390/microorganisms12030448
Ali, I., Qaiser, H., Abdullah, R., Kaleem, A., Iqtedar, M., Iqbal, I., et al. (2024) Prospective Roles of Extremophilic Fungi in Climate Change Mitigation Strategies. Journal of Fungi, 10, Article 385. https://doi.org/10.3390/jof10060385
Kumar, A., Shrivastava, M. and Saxena, P. (2024) Extremophiles Adap-tation and Its Utilization in Mitigating Abiotic Stress in Crops. In: Extremophiles for Sustainable Agriculture and Soil Health Improvement, Springer, 63-88. https://doi.org/10.1007/978-3-031-70203-7_4
Jojy, E.T. and Manohar K.A. (2024) Strengthening Tree Nutrition through the Application of Biofertilizers. In: Sustainable Plant Nutrition in a Changing World, Springer, 267-284. https://doi.org/10.1007/978-3-031-53590-1_13
Mnyazi Jefwa, J., Okoth, S., Baraza, D., Korir, M.J. and Sakha, M.A. (2025) Ectomycorrhizal Fungi as Biofertilizers in Forestry Restoration in Africa. In: Forest Fungi, Else-vier, 463-478. https://doi.org/10.1016/b978-0-443-18870-1.00013-5
Tomao, A., Antonio Bonet, J., Castaño, C. and de-Miguel, S. (2020) How Does Forest Management Affect Fungal Diversity and Community Composition? Current Knowledge and Future Perspectives for the Conservation of Forest Fungi. Forest Ecology and Management, 457, Article 117678. https://doi.org/10.1016/j.foreco.2019.117678
Bernreiter, A. and Teijeiro, R.G. (2022) Fungal Biodiversity and Forest Soil Health Ecosystems. Sustainable Soil Management as a Key to Preserve Soil Biodiversity and Stop Its Degrada-tion.
Al-Nasser, M., Al-Mansour, Y. and Al-Sayid, N. (2024) The Role of Mycorrhizal Fungi in Forest Ecosystem Health. Journal of Selvicoltura Asean, 1, 271-281.
Muthukkaruppan, E., Lavanya, A.K., Chinnathambi, V., Suku, A.T. and Paul, S. (2024) Application of Bioinoculants in Horticulture, Plantation, and Forest Farming: Is It Truly Ecologically Sustainable? In: Bio-Inoculants in Horticultural Crops, Elsevier, 21-48. https://doi.org/10.1016/b978-0-323-96005-2.00003-9
Haroun, M., Xie, S., Awadelkareem, W., Wang, J. and Qian, X. (2023) Influence of Biofertilizer on Heavy Metal Bioremediation and Enzyme Activities in the Soil to Revealing the Poten-tial for Sustainable Soil Restoration. Scientific Reports, 13, Article No. 20684. https://doi.org/10.1038/s41598-023-44986-8
Grodnitskaya, I.D., Senashova, V.A., Antonov, G.I., Polyakova, G.G., Pashkeeva, O.E. and Pashenova, N.V. (2023) Bioindication of the Status of Dark Gray Soil in Pine Forests of Krasnoyarsk Forest-Steppe under Anthropogenic Impact. Eurasian Soil Science, 56, 1343-1358. https://doi.org/10.1134/s1064229323601233
Aguilar-Paredes, A., Valdés, G. and Nuti, M. (2020) Ecosystem Func-tions of Microbial Consortia in Sustainable Agriculture. Agronomy, 10, Article 1902. https://doi.org/10.3390/agronomy10121902
Sharma, S., Gupta, R., Dugar, G. and Srivastava, A.K. (2012) Impact of Application of Biofertilizers on Soil Structure and Resident Microbial Community Structure and Function. In: Bacteria in Ag-robiology: Plant Probiotics, Springer, 65-77. https://doi.org/10.1007/978-3-642-27515-9_4
Malusà, E., Pinzari, F. and Canfora, L. (2016) Efficacy of Biofertilizers: Challenges to Improve Crop Production. In: Microbial Inoculants in Sus-tainable Agricultural Productivity, Springer, 17-40. https://doi.org/10.1007/978-81-322-2644-4_2
Mitter, E.K., Tosi, M., Obregón, D., Dunfield, K.E. and Germida, J.J. (2021) Rethinking Crop Nutrition in Times of Modern Microbiology: Inno-vative Biofertilizer Technologies. Frontiers in Sustainable Food Systems, 5, Article 606815. https://doi.org/10.3389/fsufs.2021.606815
Yadav, A. and Yadav, K. (2024) Challenges and Opportunities in Bio-fertilizer Commercialization. SVOA Microbiology, 5, 1-14. https://doi.org/10.58624/svoamb.2024.05.037
Andreote, F.D., Gumiere, T. and Durrer, A. (2014) Exploring Interactions of Plant Microbiomes. Scientia Agricola, 71, 528-539. https://doi.org/10.1590/0103-9016-2014-0195
Glick, B.R. and Gamalero, E. (2021) Recent Developments in the Study of Plant Microbiomes. Microorganisms, 9, Article 1533. https://doi.org/10.3390/microorganisms9071533
Sarnaik, A., Liu, A., Nielsen, D. and Varman, A.M. (2020) High-throughput Screening for Efficient Microbial Biotechnology. Current Opinion in Biotechnology, 64, 141-150. https://doi.org/10.1016/j.copbio.2020.02.019
Atieno, M., Herrmann, L., Nguyen, H.T., Phan, H.T., Nguyen, N.K., Srean, P., et al. (2020) Assessment of Biofertilizer Use for Sustainable Agriculture in the Great Mekong Region. Journal of Environmental Management, 275, Article 111300. https://doi.org/10.1016/j.jenvman.2020.111300
Ibáñez, A., Garrido-Chamorro, S., Vasco-Cárdenas, M. and Barreiro, C. (2023) From Lab to Field: Biofertilizers in the 21st Century. Hor-ticulturae, 9, Article 1306. https://doi.org/10.3390/horticulturae9121306
Rawat, M., Chauhan, M. and Pandey, A. (2024) Extremophiles and Their Expanding Biotechnological Applications. Archives of Microbiology, 206, Article No. 247. https://doi.org/10.1007/s00203-024-03981-x
Prando, A.M., Barbosa, J.Z., de Oliveira, A.B., Nogueira, M.A., Possamai, E.J. and Hungria, M. (2024) Benefits of Soybean Co-Inoculation with Bradyrhizobium spp. and Azospirillum brasilense: Large-Scale Validation with Farmers in Brazil. European Journal of Agronomy, 155, Article 127112. ttps://doi.org/10.1016/j.eja.2024.127112
Andreata, M.F.L., Afonso, L., Niekawa, E.T.G., Salomão, J.M., Basso, K.R., Silva, M.C.D., et al. (2024) Microbial Fertilizers: A Study on the Current Scenario of Brazil-ian Inoculants and Future Perspectives. Plants, 13, Article 2246. https://doi.org/10.3390/plants13162246
Fer-reyra-Suarez, D., García-Depraect, O. and Castro-Muñoz, R. (2024) A Review on Fungal-Based Biopesticides and Biofertiliz-ers Production. Ecotoxicology and Environmental Safety, 283, Article 116945. https://doi.org/10.1016/j.ecoenv.2024.116945
Barwant, M.M., Singh, B., Sharma, S., Gore, N.T. and Mohammad, A. (2025) Role of Mycorrhizal Association in Leguminous Plant Growth. In: Recent Trends and Applications of Leguminous Microgreens as Functional Foods, Springer, 277-295. https://doi.org/10.1007/978-3-031-75678-8_13
Okon, Y. and Itzigsohn, R. (1995) The Development of Azospirillum as a Commercial Inoculant for Improving Crop Yields. Biotechnology Advances, 13, 415-424. https://doi.org/10.1016/0734-9750(95)02004-m
Marks, B.B., Megías, M., Ollero, F.J., Nogueira, M.A., Araujo, R.S. and Hungria, M. (2015) Maize Growth Promotion by Inoculation with Azospirillum brasilense and Metabolites of Rhizobium tropici Enriched on Lipo-Chitooligosaccharides (LCOS). AMB Express, 5, 1-11. https://doi.org/10.1186/s13568-015-0154-z
Bano, Q.U.D.S.I.A., Ilyas, N., Bano, A., Zafar, N.A.D.I.A., Akram, A.B.I.D.A. and Hassan, F. (2013) Effect of Azospirillum Inoculation on Maize (Zea mays L.) under Drought Stress. Pakistan Journal of Botany, 45, 13-20.
Galindo, F.S., Teixeira Filho, M.C.M., Buzetti, S., Santini, J.M.K., Alves, C.J., Nogueira, L.M., et al. (2016) Corn Yield and Foliar Diagnosis Affected by Nitrogen Fertilization and Inoculation with Azospi-rillum brasilense. Revista Brasileira de Ciência do Solo, 40, e0150364. https://doi.org/10.1590/18069657rbcs20150364
Htwe, A.Z., Moh, S.M., Soe, K.M., Moe, K. and Yamakawa, T. (2019) Effects of Biofertilizer Produced from Bradyrhizobium and Streptomyces griseoflavus on Plant Growth, Nodulation, Nitrogen Fixation, Nutrient Uptake, and Seed Yield of Mung Bean, Cowpea, and Soybean. Agronomy, 9, Article 77. https://doi.org/10.3390/agronomy9020077
Abd El-Lattief, E.A. (2016) Use of Azospirillum and Azobacter Bacteria as Biofertilizers in Cereal Crops: A Review. International Journal of Engineering and Applied Science, 6, 36-44.
Sellappan, R. and Thangavel, K. (2025) Role of Arbuscular Mycorrhizal Fungi (AMF) in Organic Vegetables Production. In: Organic Production of Vegetable Crops, Apple Academic Press, 245-266. https://doi.org/10.1201/9781003539049-11
Gnanachitra, M., Balachandar, D. and Kaur, J. (2025) Role of Bioferti-lizers in Organic Vegetable Production. In: Organic Production of Vegetable Crops, Apple Academic Press, 215-244. https://doi.org/10.1201/9781003539049-10
Rodríguez-Rodríguez, Y., Soldevilla-Hernández, L.I., Guevara, M.á., Gandini, G. and Jáuregui-Haza, U.J. (2025) Assessment of a Sargassum-Based Liquid Biofertilizer for Enhanced Banana Cul-tivation in Small-Scale Family Farms. Case Studies in Chemical and Environmental Engineering, 12, Article 101252. https://doi.org/10.1016/j.cscee.2025.101252
Das, D., Riamei, M., Paul, P., Singh, N., Ingti, B., Sarkar, R.D., et al. (2025) Understanding the Role of Soil Microorganisms in Alleviating Hydric and Edaphic Stress towards Sustainable Agriculture. Discover Soil, 2, Article No. 47. https://doi.org/10.1007/s44378-025-00076-x
Padbhushan, R., Sinha, A.K., Bhattacharya, P.M., Poddar, P., Mitra, B. and Kumar, U. (2025) Partial Conservation Agriculture for Increasing Productivity and Profitability in Rice-Wheat System of the Sub-Himalayan Plains. International Journal of Plant Production, 19, 421-438. https://doi.org/10.1007/s42106-025-00344-4
Lotter, D. (2015) Facing Food Insecurity in Africa: Why, after 30 Years of Work in Organic Agriculture, I Am Promoting the Use of Synthetic Fertilizers and Herbicides in Small-Scale Staple Crop Production. Agriculture and Human Values, 32, 111-118. https://doi.org/10.1007/s10460-014-9547-x
Lesueur, D., Deaker, R., Herrmann, L., Bräu, L. and Jansa, J. (2016) The Production and Potential of Biofertilizers to Improve Crop Yields. In: Bioformulations: For Sustainable Agriculture, Springer, 71-92. https://doi.org/10.1007/978-81-322-2779-3_4
Palanisamy, S., Jayachandran, P.R., Eswaran, S., Balu, R.D., Senthilkumar, A. and Saravanavelan, G. (2025) Production Cost of Conventional Fertilizers and Nanofertilizers. In: Nanofertilizers for Sustainable Agriculture, Springer, 341-354. https://doi.org/10.1007/978-3-031-78649-5_14
Praveen, K.V. and Singh, A. (2019) Realizing the Potential of a Low-Cost Technology to Enhance Crop Yields: Evidence from a Meta-Analysis of Biofertilizers in India. Agricultural Econom-ics Research Review, 32, 77-91. https://doi.org/10.5958/0974-0279.2019.00018.1
Carvajal-Muñoz, J.S. and Car-mona-Garcia, C.E. (2012) Benefits and Limitations of Biofertilization in Agricultural Practices. Livestock Research for Rural Development, 24, 1-8.
Raimi, A., Roopnarain, A. and Adeleke, R. (2021) Biofertilizer Production in Africa: Current Status, Factors Impeding Adoption and Strategies for Success. Scientific African, 11, e00694. https://doi.org/10.1016/j.sciaf.2021.e00694
Raimi, A., Adeleke, R. and Roopnarain, A. (2017) Soil Fertility Chal-lenges and Biofertiliser as a Viable Alternative for Increasing Smallholder Farmer Crop Productivity in Sub-Saharan Africa. Cogent Food & Agriculture, 3, Article 1400933. https://doi.org/10.1080/23311932.2017.1400933
Pal, S., Singh, H.B., Farooqui, A. and Rakshit, A. (2015) Fungal Biofertilizers in Indian Agriculture: Perception, Demand and Promotion. Journal of Eco-Friendly Agriculture, 10, 101-113.
Sahoo, R.K., Bhardwaj, D. and Tuteja, N. (2012) Biofertilizers: A Sustainable Eco-Friendly Agricultural Approach to Crop Improvement. In: Plant Acclimation to Environmental Stress, Springer, 403-432. https://doi.org/10.1007/978-1-4614-5001-6_15
Bhattacharjee, R. and Dey, U. (2014) Bioferti-lizer, a Way towards Organic Agriculture: A Review. African Journal of Microbiology Research, 8, 2332-2343. https://doi.org/10.5897/ajmr2013.6374
Thomas, S. and Nandhini, D.M. (2019) A Study on the Farmers’ Awareness and Acceptance of Biofertilizers in Kottayam District. GIS Business, 14, 425-431. https://doi.org/10.26643/gis.v14i6.13572
Arjjumend, H., Koutouki, K. and Neufeld, S. (2021) Comparative Ad-vantage of Using Biofertilizers in Indian Agroecosystems: An Analysis from the Perspectives of Stakeholders. European Journal of Agriculture and Food Sciences, 3, 26-36. https://doi.org/10.24018/ejfood.2021.3.2.243
Mishra, B.K. and Barolia, S.K. (2020) Quality Assessment of Microbial Inoculants as Biofertilizer. International Journal of Current Microbiolo-gy and Applied Sciences, 9, 3715-3729. https://doi.org/10.20546/ijcmas.2020.910.428
Vassileva, M., Malusà, E., Sas-Paszt, L., Trzcinski, P., Galvez, A., Flor-Peregrin, E., et al. (2021) Fermentation Strategies to Improve Soil Bio-Inoculant Production and Quality. Microorganisms, 9, Article 1254. https://doi.org/10.3390/microorganisms9061254
García de Salamone, I.E., Esquivel-Cote, R., Hernández-Melchor, D.J. and Alarcón, A. (2019) Manufacturing and Quality Control of Inoculants from the Paradigm of Circular Agriculture. In: Microbial Interventions in Agriculture and Environment, Springer, 37-74. https://doi.org/10.1007/978-981-13-8383-0_2
Bharti, N. and Suryavanshi, M. (2021) Quality Control and Regulations of Biofertilizers: Current Scenario and Future Prospects. In: Biofertilizers, Elsevier, 133-141. https://doi.org/10.1016/b978-0-12-821667-5.00018-x
Ghosh, T.K., Singh, R.P., Duhan, J.S. and Yadav, D.S. (2001) A Review on Quality Control of Biofertilizer in India. The Fertiliser Association of India.
Tariq, M., Jameel, F., Ijaz, U., Abdullah, M. and Rashid, K. (2022) Biofertilizer Microorganisms Accompanying Pathogenic Attributes: A Potential Threat. Physiology and Molecular Biology of Plants, 28, 77-90. https://doi.org/10.1007/s12298-022-01138-y
Santos, M.S., Rodrigues, T.F., Nogueira, M.A. and Hungria, M. (2021) The Challenge of Combining High Yields with Environmentally Friendly Bioproducts: A Review on the Compatibility of Pesticides with Microbial Inoculants. Agronomy, 11, Article 870. https://doi.org/10.3390/agronomy11050870
Ahsan, M.L., Ali, A. and Ahmed, I. (2012) Biofertiliser: A Highly Potent Alternative to Chemical Fertilisers: Uses and Future Prospects. Journal of Chemical Engineering and Biological Sciences, 6, 10-23.
Rajanna, G.A., Dass, A., Suman, A., Babu, S., Venkatesh, P., Singh, V., et al. (2022) Co-Implementation of Tillage, Irrigation, and Fertilizers in Soybean: Impact on Crop Productivity, Soil Moisture, and Soil Microbial Dynamics. Field Crops Research, 288, Article 108672. https://doi.org/10.1016/j.fcr.2022.108672
Ikan, C., Soussani, F., Ouhaddou, R., Ech-Chatir, L., Errouh, F., Boutasknit, A., et al. (2024) Use of Biofertilizers as an Effective Management Strategy to Improve the Photosynthetic Apparatus, Yield, and Tolerance to Drought Stress of Drip-Irrigated Wheat in Semi-Arid Environments. Agronomy, 14, Article 1316. https://doi.org/10.3390/agronomy14061316
Dzvene, A.R. and Chiduza, C. (2024) Application of Biofertilizers for Enhancing Beneficial Microbiomes in Push–Pull Cropping Systems: A Review. Bacteria, 3, 271-286. https://doi.org/10.3390/bacteria3040018
Herrmann, L. and Lesueur, D. (2013) Challenges of Formula-tion and Quality of Biofertilizers for Successful Inoculation. Applied Microbiology and Biotechnology, 97, 8859-8873. https://doi.org/10.1007/s00253-013-5228-8
Pirttilä, A.M., Mohammad Parast Tabas, H., Baruah, N. and Koskimäki, J.J. (2021) Biofertilizers and Biocontrol Agents for Agriculture: How to Identify and Develop New Potent Microbial Strains and Traits. Microorganisms, 9, Article 817. https://doi.org/10.3390/microorganisms9040817
Adesemoye, A.O. and Egamberdieva, D. (2013) Beneficial Effects of Plant Growth-Promoting Rhizobacteria on Improved Crop Production: Pro-spects for Developing Economies. In: Bacteria in Agrobiology: Crop Productivity, Springer, 45-63. https://doi.org/10.1007/978-3-642-37241-4_2
Egamberdieva, D. and Adesemoye, A.O. (2016) Improvement of Crop Protection and Yield in Hostile Agroecological Conditions with PGPR-Based Biofertilizer Formulations. In: Bioformula-tions: For Sustainable Agriculture, Springer, 199-211. https://doi.org/10.1007/978-81-322-2779-3_11
Singh, M., Singh, D., Gupta, A., Pandey, K.D., Singh, P.K. and Kumar, A. (2019) Plant Growth Promoting Rhizobacteria: Application in Biofertilizers and Biocontrol of Phytopathogens. In: PGPR Amelioration in Sustainable Agriculture, Woodhead Publishing, 41-66.
Mulugeta, M., Gelaw, T.A. and Rabuma, T. (2025) The Dynamic Interplay between Rhizospheric Microorgan-isms and Plant Health: Implications for Enhancing Growth and Stress Resilience in Sustainable Agriculture. Journal of Plant Nutrition, 1-31. https://doi.org/10.1080/01904167.2025.2509131
Horácio, E.H., Montagner Souza, T., Catarino, P., Silva, B., Yunes, J.S., Zucareli, C., et al. (2024) Co-Inoculation of Cyanobacteria, Rhi-zobia, and Azospirilla Associated with Fertilizer N Increases the Common Bean Grain Yield. Journal of Plant Nutrition, 48, 1166-1180. https://doi.org/10.1080/01904167.2024.2422587
Kolapo, A., Ojo, T.O., Khumalo, N.Z., Elhindi, K.M., Kassem, H.S. and Filusi, O.J. (2025) Enhancing Land Nutrient through Rhizobia Biofertilization: Modeling the Joint Effects of Rhizobium Inoculants and Improved Soybean Varieties on Soybean Productivity in North Central, Nigeria. Frontiers in Sus-tainable Food Systems, 9, Article 1509230. https://doi.org/10.3389/fsufs.2025.1509230
Rai, S., Datta, B., Ahmed, S., Dahal, N. and Kumar, R. (2025) Climate Change and Agroecosystems: The Unseen Consequences on Microbes and Soil Microbial Diversity. In: Plant-Microbiome Interactions for Climate-Resilient Agriculture, Springer, 41-72. https://doi.org/10.1007/978-981-96-3534-4_3
Pei, B., Liu, T., Xue, Z., Cao, J., Zhang, Y., Yu, M., et al. (2025) Effects of Biofertilizer on Yield and Quality of Crops and Properties of Soil under Field Conditions in China: A Meta-Analysis. Agri-culture, 15, Article 1066. https://doi.org/10.3390/agriculture15101066
Lahijanian, S., Schmidt, J., Feuerstein, U. and Polle, A. (2025) Effects of Cover Crops and Microbial Inoculants in Different Farming Systems on Soil Microbial Com-munities and Yield of Maize. Biology and Fertility of Soils, 1-18. https://doi.org/10.1007/s00374-025-01929-x
Bose, P., Ray, M., Patra, P.K., Dasgupta, S., Saha, K., Sen, A., et al. (2025) Different Organic and Inorganic Sources of Plant Nutri-ents Influence Soil Health, Leading to Improve the Productivity and Profitability of a Fourteen-Year Long-Term Rice-Potato–Groundnut Cropping Pattern. Applied and Environmental Soil Science, 2025, Article 9943996. https://doi.org/10.1155/aess/9943996