全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Solar Tracking Device for Photovoltaic Solar Energy System: A Review

DOI: 10.4236/oalib.1113070, PP. 1-25

Subject Areas: Applied Physics

Keywords: Solar, Tracking, Photovoltaic, Energy

Full-Text   Cite this paper   Add to My Lib

Abstract

In the face of the traditional fossil fuel energy crisis, solar energy stands out as a green, clean, and renewable energy source. Solar photovoltaic tracking technology is an effective solution to this problem. This review delves into the sustainable development of solar photovoltaic tracking technology, analyzing its current state, limiting factors and future trends. The adjustment of solar panel orientation using solar tracking technology to maximize energy generation efficiency has been widely implemented in various fields, including solar power plants. Currently, limiting factors for this technology include energy generation efficiency, costs and the complexity of various environmental conditions. In terms of sustainable development, this article emphasizes the importance of photovoltaic materials and manufacturing innovation, energy efficiency improvements, as well as the integration of smart and digital technologies. Future trends include higher precision, broader applications, and lower costs. Solar photovoltaic tracking technology will play a pivotal role in global energy production, fostering the realization of a clean and sustainable energy future.

Cite this paper

Kofoworola, A. H. , Ezekiel, A. K. , Joshua, A. A. , Oluwapelumi, O. E. , Olayinka, O. H. and Azeez, O. (2025). Solar Tracking Device for Photovoltaic Solar Energy System: A Review. Open Access Library Journal, 12, e3070. doi: http://dx.doi.org/10.4236/oalib.1113070.

References

[1]  Guo, Z., Zhou, K., Zhang, C., Lu, X., Chen, W. and Yang, S. (2018) Residential Electricity Consumption Behavior: Influencing Factors, Related Theories and Intervention Strategies. Renewable and Sustainable Energy Reviews, 81, 399-412. https://doi.org/10.1016/j.rser.2017.07.046
[2]  Hassan, Q., Abdulateef, A.M., Hafedh, S.A., Al-samari, A., Abdulateef, J., Sameen, A.Z., et al. (2023) Renewable Energy-to-Green Hydrogen: A Review of Main Resources Routes, Processes and Evaluation. International Journal of Hydrogen Energy, 48, 17383-17408. https://doi.org/10.1016/j.ijhydene.2023.01.175
[3]  Kalair, A., Abas, N., Saleem, M.S., Kalair, A.R. and Khan, N. (2020) Role of Energy Storage Systems in Energy Transition from Fossil Fuels to Renewables. Energy Storage, 3, e135. https://doi.org/10.1002/est2.135
[4]  Lior, N. (2010) Sustainable Energy Development: The Present (2009) Situation and Possible Paths to the Future. Energy, 35, 3976-3994. https://doi.org/10.1016/j.energy.2010.03.034
[5]  Ju, X., Xu, C., Hu, Y., Han, X., Wei, G. and Du, X. (2017) A Review on the Development of Photovoltaic/Concentrated Solar Power (PV-CSP) Hybrid Systems. Solar Energy Materials and Solar Cells, 161, 305-327. https://doi.org/10.1016/j.solmat.2016.12.004
[6]  Islam, M.T., Huda, N., Abdullah, A.B. and Saidur, R. (2018) A Com-prehensive Review of State-of-the-Art Concentrating Solar Power (CSP) Technologies: Current Status and Research Trends. Renewable and Sustainable Energy Reviews, 91, 987-1018. https://doi.org/10.1016/j.rser.2018.04.097
[7]  Parida, B., Iniyan, S. and Goic, R. (2011) A Review of Solar Photovoltaic Technologies. Renewable and Sustainable Energy Reviews, 15, 1625-1636. https://doi.org/10.1016/j.rser.2010.11.032
[8]  Kannan, N. and Vakeesan, D. (2016) Solar Energy for Fu-ture World: A Review. Renewable and Sustainable Energy Reviews, 62, 1092-1105. https://doi.org/10.1016/j.rser.2016.05.022
[9]  Nsengiyumva, W., Chen, S.G., Hu, L. and Chen, X. (2018) Recent Ad-vancements and Challenges in Solar Tracking Systems (STS): A Review. Renewable and Sustainable Energy Reviews, 81, 250-279. https://doi.org/10.1016/j.rser.2017.06.085
[10]  Lorilla, F.M.A. and Barroca, R. (2022) Challenges and Recent Developments in Solar Tracking Strategies for Concentrated Solar Parabolic Dish. Indonesian Journal of Electrical Engineer-ing and Computer Science, 26, 1368-1378. https://doi.org/10.11591/ijeecs.v26.i3.pp1368-1378
[11]  Gu, W., Zhao, X., Yan, X., Wang, C. and Li, Q. (2019) Energy Technological Progress, Energy Consumption, and CO2 Emissions: Empirical Evi-dence from China. Journal of Cleaner Production, 236, Article 117666. https://doi.org/10.1016/j.jclepro.2019.117666
[12]  Höök, M. and Tang, X. (2013) Depletion of Fossil Fuels and Anthro-pogenic Climate Change—A Review. Energy Policy, 52, 797-809. https://doi.org/10.1016/j.enpol.2012.10.046
[13]  Ab-as, N., Kalair, A. and Khan, N. (2015) Review of Fossil Fuels and Future Energy Technologies. Futures, 69, 31-49. https://doi.org/10.1016/j.futures.2015.03.003
[14]  Holechek, J.L., Geli, H.M.E., Sawalhah, M.N. and Valdez, R. (2022) A Global Assessment: Can Renewable Energy Replace Fossil Fuels by 2050? Sustainability, 14, Article 4792. https://doi.org/10.3390/su14084792
[15]  Hayat, M.B., Ali, D., Monyake, K.C., Alagha, L. and Ahmed, N. (2018) Solar Energy—A Look into Power Generation, Challenges, and a Solar-Powered Future. International Journal of Energy Research, 43, 1049-1067. https://doi.org/10.1002/er.4252
[16]  Yekinni, S., Asiata, I., Hakeem, O. and Mubarak, L. (2023) Solar Photovoltaic Energy System. In: Nanogenerators and Self-Powered Systems, Intech Open, 1-15. https://doi.org/10.5772/intechopen.108958
[17]  Panwar, N.L., Kaushik, S.C. and Kothari, S. (2011) Role of Renewable Energy Sources in Environmental Protection: A Review. Renewable and Sustainable Energy Reviews, 15, 1513-1524. https://doi.org/10.1016/j.rser.2010.11.037
[18]  Kumar, C.M.S., Singh, S., Gupta, M.K., Nimdeo, Y.M., Raushan, R., Deorankar, A.V., et al. (2023) Solar Energy: A Promising Renewable Source for Meeting Energy Demand in Indian Agricul-ture Applications. Sustainable Energy Technologies and Assessments, 55, Article 102905. https://doi.org/10.1016/j.seta.2022.102905
[19]  Singh, G.K. (2013) Solar Power Generation by PV (Photovoltaic) Tech-nology: A Review. Energy, 53, 1-13. https://doi.org/10.1016/j.energy.2013.02.057
[20]  Solanki, C.S. (2015) Solar Pho-tovoltaics: Fundamentals, Technologies and Applica-tions. PHI Learning Ltd.
[21]  Bayod-Rújula, A.A. (2019) Solar Photovoltaics (PV). In: Solar Hydrogen Production, Elsevier, 237-295. https://doi.org/10.1016/b978-0-12-814853-2.00008-4
[22]  Ya’u Muhammad, J., Tajudeen Jimoh, M., Baba Kyari, I., Abdullahi Gele, M. and Musa, I. (2019) A Review on Solar Tracking System: A Technique of Solar Power Output Enhance-ment. Engineering Science, 4, 1-11. https://doi.org/10.11648/j.es.20190401.11
[23]  Mousazadeh, H., Keyhani, A., Ja-vadi, A., Mobli, H., Abrinia, K. and Sharifi, A. (2009) A Review of Principle and Sun-Tracking Methods for Maximizing Solar Systems Output. Renewable and Sustainable Energy Reviews, 13, 1800-1818. https://doi.org/10.1016/j.rser.2009.01.022
[24]  Prinsloo, G. and Dobson, R.T. (2015) Solar Tracking. Solar Books.
[25]  Singh, R., Kumar, S., Gehlot, A. and Pachauri, R. (2018) An Imperative Role of Sun Trackers in Photovoltaic Technology: A Review. Renewable and Sustainable Energy Reviews, 82, 3263-3278. https://doi.org/10.1016/j.rser.2017.10.018
[26]  Awasthi, A., Shukla, A.K., S.R., M.M., Dondariya, C., Shukla, K.N., Porwal, D., et al. (2020) Review on Sun Tracking Technology in Solar PV System. Energy Reports, 6, 392-405. https://doi.org/10.1016/j.egyr.2020.02.004
[27]  Abro, A.A., Bano, S., Tariq, U. and Shah, I.A. (2022) Sun Tracking and Control Design for PV Solar Energy System. International Journal of Innovations in Science and Technology, 4, 77-93. https://doi.org/10.33411/ijist/2022040507
[28]  Safan, Y.M., Shaaban, S. and Abu El-Sebah, M.I. (2018) Performance Evaluation of a Multi-Degree of Freedom Hybrid Controlled Dual Axis Solar Tracking System. Solar Energy, 170, 576-585. https://doi.org/10.1016/j.solener.2018.06.011
[29]  Oner, Y., Cetin, E., Ozturk, H.K. and Yilanci, A. (2009) Design of a New Three-Degree of Freedom Spherical Motor for Photovoltaic-Tracking Systems. Renewable Energy, 34, 2751-2756. https://doi.org/10.1016/j.renene.2009.04.025
[30]  Xu, L., Long, E., Wei, J., Cheng, Z. and Zheng, H. (2021) A New Ap-proach to Determine the Optimum Tilt Angle and Orientation of Solar Collectors in Mountainous Areas with High Altitude. Energy, 237, Article 121507. https://doi.org/10.1016/j.energy.2021.121507
[31]  Alexandru, C. (2024) Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism. Mathematics, 12, Article 1034. https://doi.org/10.3390/math12071034
[32]  Yao, Y., Hu, Y., Gao, S., Yang, G. and Du, J. (2014) A Multipurpose Du-al-Axis Solar Tracker with Two Tracking Strategies. Renewable Energy, 72, 88-98. https://doi.org/10.1016/j.renene.2014.07.002
[33]  Zhou, H., Xu, J., Liu, X., Zhang, H., Wang, D., Chen, Z., et al. (2017) Bio-Inspired Photonic Materials: Prototypes and Structural Effect Designs for Applications in Solar Energy Manipulation. Advanced Functional Materials, 28, Article 1705309. https://doi.org/10.1002/adfm.201705309
[34]  Bhattacharjee, J. and Roy, S. (2024) Smart Materials for Sustainable Energy. Natural Resources Conservation and Research, 7, Article 5536. https://doi.org/10.24294/nrcr.v7i1.5536
[35]  Verma, B.D., Gour, A. and Pandey, M. (2020) A Review Paper on Solar Tracking System for Photovoltaic Power Plant. International Journal of Engineering Research & Technology, 9, 160-166.
[36]  Lorenzo, E. (2011). Energy Collected and Delivered by PV Modules. In: Handbook of Photovoltaic Science and Engineering, Wiley, 984-1042.
[37]  Shahsavari, A. and Akbari, M. (2018) Potential of Solar Energy in Developing Countries for Reducing Energy-Related Emissions. Renewable and Sustainable Energy Reviews, 90, 275-291. https://doi.org/10.1016/j.rser.2018.03.065
[38]  Jacobson, M.Z. and Delucchi, M.A. (2011) Providing All Global Energy with Wind, Water, and Solar Power, Part I: Technologies, Energy Resources, Quantities and Areas of Infrastructure, and Materials. Energy Policy, 39, 1154-1169. https://doi.org/10.1016/j.enpol.2010.11.040
[39]  Munro, P.G. and Samara-koon, S. (2022) Off-Grid Electrical Urbanism: Emerging Solar Energy Geographies in Ordinary Cities. Journal of Urban Technology, 30, 127-149. https://doi.org/10.1080/10630732.2022.2068939
[40]  Nwaigwe, K.N., Mutabilwa, P. and Dintwa, E. (2019) An Overview of Solar Power (PV Systems) Integration into Electricity Grids. Materials Science for Energy Technologies, 2, 629-633. https://doi.org/10.1016/j.mset.2019.07.002
[41]  Venkateswari, R. and Sreejith, S. (2019) Factors Influencing the Efficiency of Photovoltaic System. Renewable and Sustainable Energy Reviews, 101, 376-394. https://doi.org/10.1016/j.rser.2018.11.012
[42]  Polman, A., Knight, M., Garnett, E.C., Ehrler, B. and Sinke, W.C. (2016) Photovoltaic Materials: Present Efficiencies and Future Challenges. Science, 352, aad4424. https://doi.org/10.1126/science.aad4424
[43]  Pastuszak, J. and Węgierek, P. (2022) Photovoltaic Cell Generations and Current Research Directions for Their Development. Materials, 15, Article 5542. https://doi.org/10.3390/ma15165542
[44]  Maalouf, A., Okoroafor, T., Jehl, Z., Babu, V. and Resalati, S. (2023) A Com-prehensive Review on Life Cycle Assessment of Commercial and Emerging Thin-Film Solar Cell Systems. Renewable and Sustainable Energy Reviews, 186, Article 113652. https://doi.org/10.1016/j.rser.2023.113652
[45]  Singh, B.P., Goyal, S.K. and Kumar, P. (2021) Solar PV Cell Materials and Technologies: Analyzing the Recent Developments. Materials Today: Proceedings, 43, 2843-2849. https://doi.org/10.1016/j.matpr.2021.01.003
[46]  Ramanujam, J. and Singh, U.P. (2017) Copper Indium Gallium Selenide Based Solar Cells—A Review. Energy & Environmental Science, 10, 1306-1319. https://doi.org/10.1039/c7ee00826k
[47]  Lamont, L.A. (2013) Third Generation Photovoltaic (PV) Cells for Eco-Efficient Buildings and Other Applications. In: Nanotechnology in Eco-Efficient Construction, Elsevier, 270-296. https://doi.org/10.1533/9780857098832.2.270
[48]  Jasim, K.E. (2011) Dye Sensitized Solar Cells-Working Principles, Challenges and Opportunities. Solar Cells-Dye-Sensitized Devices, 8, 172ā210.
[49]  Rehman, F., Syed, I.H., Khanam, S., Ijaz, S., Mehmood, H., Zubair, M., et al. (2023) Fourth-Generation Solar Cells: A Review. Energy Advances, 2, 1239-1262. https://doi.org/10.1039/d3ya00179b
[50]  Cao, X., Tan, C., Sindoro, M. and Zhang, H. (2017) Hybrid Mi-cro-/Nano-Structures Derived from Metal-Organic Frameworks: Preparation and Applications in Energy Storage and Con-version. Chemical Society Reviews, 46, 2660-2677. https://doi.org/10.1039/c6cs00426a
[51]  Mehmood, H., Tauqeer, T. and Hussain, S. (2018) Recent Progress in Silicon-Based Solid-State Solar Cells. International Journal of Electronics, 105, 1568-1582. https://doi.org/10.1080/00207217.2018.1477191
[52]  Asim, N., Sopian, K., Ahmadi, S., Saeedfar, K., Al-ghoul, M.A., Saadatian, O., et al. (2012) A Review on the Role of Materials Science in Solar Cells. Renewable and Sustainable Energy Reviews, 16, 5834-5847. https://doi.org/10.1016/j.rser.2012.06.004
[53]  Huang, G., Curt, S.R., Wang, K. and Markides, C.N. (2020) Challenges and Opportunities for Nanomaterials in Spectral Splitting for High-Performance Hybrid Solar Photovoltaic-Thermal Applications: A Review. Nano Materials Science, 2, 183-203. https://doi.org/10.1016/j.nanoms.2020.03.008
[54]  Nowsherwan, G.A., Ali, Q., Ali, U.F., Ahmad, M., Khan, M. and Hussain, S.S. (2024) Advances in Organic Materials for Next-Generation Optoelectronics: Potential and Challenges. Organics, 5, 520-560. https://doi.org/10.3390/org5040028
[55]  Amano, H., Baines, Y., Beam, E., Borga, M., Bouchet, T., Chalker, P.R., et al. (2018) The 2018 Gan Power Electronics Roadmap. Journal of Physics D: Applied Physics, 51, Article 163001. https://doi.org/10.1088/1361-6463/aaaf9d
[56]  Wolden, C.A., Kurtin, J., Baxter, J.B., Repins, I., Shaheen, S.E., Torvik, J.T., et al. (2011) Photovoltaic Manufacturing: Present Status, Future Prospects, and Research Needs. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 29, Article 030801. https://doi.org/10.1116/1.3569757
[57]  Dallaev, R., Pisarenko, T., Papež, N. and Holcman, V. (2023) Overview of the Current State of Flexible Solar Panels and Photovoltaic Materials. Materials, 16, Article 5839. https://doi.org/10.3390/ma16175839
[58]  Artz, J., Müller, T.E., Thenert, K., Kleinekorte, J., Meys, R., Sternberg, A., et al. (2017) Sustainable Conversion of Carbon Dioxide: An Integrated Review of Catalysis and Life Cycle Assessment. Chemical Reviews, 118, 434-504. https://doi.org/10.1021/acs.chemrev.7b00435
[59]  Baraneedharan, P., Sekar, S., Murugesan, S., Ahamada, D., Mohamed, S.A.B., Lee, Y., et al. (2024) Recent Advances and Remaining Challenges in Perovskite Solar Cell Components for Innovative Photovoltaics. Nanomaterials, 14, Article 1867. https://doi.org/10.3390/nano14231867
[60]  Njema, G.G., Kibet, J.K. and Ngari, S.M. (2024) A Review of Interface Engi-neering Characteristics for High Performance Perovskite Solar Cells. Measurement: Energy, 2, Article 100005. https://doi.org/10.1016/j.meaene.2024.100005
[61]  Fthenakis, V., Athias, C., Blumenthal, A., Kulur, A., Magliozzo, J. and Ng, D. (2020) Sustainability Evaluation of CDTE PV: An Update. Renewable and Sustainable Energy Reviews, 123, Article 109776. https://doi.org/10.1016/j.rser.2020.109776
[62]  Li, H. and Zhang, W. (2020) Perovskite Tandem Solar Cells: From Fundamentals to Commercial Deployment. Chemical Reviews, 120, 9835-9950. https://doi.org/10.1021/acs.chemrev.9b00780
[63]  Olatomiwa, A.L., Adam, T., Gopinath, S.C.B., Kolawole, S.Y., Olayinka, O.H. and Hashim, U. (2022) Graphene Synthesis, Fabrication, Characterization Based on Bottom-Up and Top-Down Ap-proaches: An Overview. Journal of Semiconductors, 43, Article 061101. https://doi.org/10.1088/1674-4926/43/6/061101
[64]  Xu, Y. and Liu, J. (2016) Graphene as Transparent Electrodes: Fabrication and New Emerging Applications. Small, 12, 1400-1419. https://doi.org/10.1002/smll.201502988
[65]  Zheng, Q., Li, Z., Yang, J. and Kim, J. (2014) Graphene Oxide-Based Transparent Conductive Films. Progress in Materials Science, 64, 200-247. https://doi.org/10.1016/j.pmatsci.2014.03.004
[66]  Kofoworola, A.H., Olayinka, O.H., Joshua, A.A., Kofoworola, A.M., Ayinde, A.G., Adeyemi, A.U. and Yekeen, S. Fabrication, Characterization and Applications of Multiwall Carbon Nano-tubes-Aluminium Oxide (MWCNTs-Al2O3) Ceramic Com-posites. International Journal of Research Publication and Reviews, 5, 1990-1993.
[67]  He, M., Jung, J., Qiu, F. and Lin, Z. (2012) Graphene-Based Transparent Flexible Electrodes for Poly-mer Solar Cells. Journal of Materials Chemistry, 22, Article 24254. https://doi.org/10.1039/c2jm33784c
[68]  Sidoren-kov, N.S. (2005) Physics of the Earth’s Rotation Instabilities. Astronomical & Astrophysical Transactions, 24, 425-439. https://doi.org/10.1080/10556790600593506
[69]  Kittler, R. and Darula, S. (2013) Determination of Time and Sun Position System. Solar Energy, 93, 72-79. https://doi.org/10.1016/j.solener.2013.03.021
[70]  Gaudino, E., Anacreonte, A., Caldarelli, A., Strazzullo, P., Musto, M., Bianco, N. and Russo, R. (2024) Impact of Collector Array Orientation on the Per-formance of a Flat Collectors Field for Middle-Temperature Applications. Energy Proceedings, 46, 1-7.
[71]  Jenkins, A. (2013) The Sun’s Position in the Sky. European Journal of Physics, 34, 633-652. https://doi.org/10.1088/0143-0807/34/3/633
[72]  Avila, R. and Syed, S.R. (2024) On the Elliptical Orbit of the Earth and Position of the Sun in the Sky: An Engineering Approach. The Nucleus, 61, 10-15. https://doi.org/10.71330/thenucleus.2024.1330
[73]  Karathanasis, S. (2019) Solar Radiation. In: Linear Fresnel Reflec-tor Systems for Solar Radiation Concentration, Springer, 13-72. https://doi.org/10.1007/978-3-030-05279-9_2
[74]  Rueda, J.A., Ramírez, S., Sánchez, M.A. and Guerrero, J.D.D. (2024) Sun Declination and Distribution of Natural Beam Irradiance on Earth. Atmosphere, 15, Article 1003. https://doi.org/10.3390/atmos15081003
[75]  Nwokolo, S.C., Obiwulu, A.U. and Ogbulezie, J.C. (2023) Machine Learning and Analytical Model Hybridization to Assess the Impact of Climate Change on Solar PV Energy Production. Physics and Chemistry of the Earth, Parts A/B/C, 130, Article 103389. https://doi.org/10.1016/j.pce.2023.103389
[76]  Nfaoui, M. and El-Hami, K. (2018) Optimal Tilt Angle and Orientation for Solar Photovoltaic Arrays: Case of Settat City in Morocco. In-ternational Journal of Ambient Energy, 41, 214-223. https://doi.org/10.1080/01430750.2018.1451375
[77]  Senpinar, A. (2018) Optimization of Slope Angles of Photovoltaic Arrays for Different Seasons. In: Exergetic, Energetic and Environ-mental Dimensions, Elsevier, 507-521. https://doi.org/10.1016/b978-0-12-813734-5.00028-7
[78]  Yousef, B.A.A., Radwan, A., Olabi, A.G. and Abdelkareem, M.A. (2023) Sun Composition, Solar Angles, and Estimation of Solar Radiation. In: Renewable Energy-Volume 1: Solar, Wind, and Hydropower, Elsevier, 3-22. https://doi.org/10.1016/b978-0-323-99568-9.00023-6
[79]  González-Rodríguez, L., Pérez, L., Fissore, A., Rodríguez-López, L. and Jimenez, J. (2018) Tilt and Orientation of a Flat Solar Collector to Capture Optimal Solar Irradiation in Chilean Latitudes. In: Proceedings of the 2nd International Conference on BioGeoSciences, Springer, 215-228. https://doi.org/10.1007/978-3-030-04233-2_19
[80]  Naeimi, Y., Kooben, F. and Moallem, M.H. (2020) Calculation of the Optimal Instal-lation Angle for Seasonal Adjusting of PV Panels Based on Solar Radiation Predic-tion.
[81]  Hariri, N.G., Al-Mutawa, M.A., Osman, I.S., AlMadani, I.K., Almahdi, A.M. and Ali, S. (2022) Experimental Investigation of Azimuth- and Sensor-Based Control Strategies for a PV Solar Tracking Application. Applied Sciences, 12, Article 4758. https://doi.org/10.3390/app12094758
[82]  Obiwulu, A.U., Erusiafe, N., Olopade, M.A. and Nwokolo, S.C. (2022) Mod-eling and Estimation of the Optimal Tilt Angle, Maximum Incident Solar Radiation, and Global Radiation Index of the Photo-voltaic System. Heliyon, 8, e09598. https://doi.org/10.1016/j.heliyon.2022.e09598
[83]  Qiu, Z. and Li, P. (2019) Solar Energy Resource and Its Global Distribution. In: Green Energy and Technology, Springer, 1-30. https://doi.org/10.1007/978-3-030-17283-1_1
[84]  Ozdemir, S. and Sahin, G. (2018) Multi-Criteria Decision-Making in the Location Selection for a Solar PV Power Plant Using AHP. Measurement, 129, 218-226. https://doi.org/10.1016/j.measurement.2018.07.020
[85]  Cuerno, R. and Kim, J.-S. (2020) A Perspective on Nanoscale Pattern Formation at Surfaces by Ion-Beam Irradiation. Journal of Applied Physics, 128, Article 180902. https://doi.org/10.1063/5.0021308
[86]  Cao, B., Liu, Q., Du, Y., Roujean, J., Gastellu-Etchegorry, J., Trigo, I.F., et al. (2019) A Review of Earth Surface Thermal Radiation Directionality Observing and Modeling: Historical Development, Cur-rent Status and Perspectives. Remote Sensing of Environment, 232, Article 111304. https://doi.org/10.1016/j.rse.2019.111304
[87]  Driemel, A., Augustine, J., Behrens, K., Colle, S., Cox, C., Cuevas-Agulló, E., et al. (2018) Baseline Surface Radiation Network (BSRN): Structure and Data Description (1992-2017). Earth System Science Data, 10, 1491-1501. https://doi.org/10.5194/essd-10-1491-2018
[88]  Barbón, A., Bayón-Cueli, C., Bayón, L. and Rodríguez-Suanzes, C. (2022) Analysis of the Tilt and Azimuth Angles of Photovoltaic Systems in Non-Ideal Positions for Urban Applications. Applied Energy, 305, Article 117802. https://doi.org/10.1016/j.apenergy.2021.117802
[89]  Raisal, A.Y. and Rakhmadi, A.J. (2020) Understanding the Effect of Revolution and Rotation of the Earth on Prayer Times Using Accurate Times. Ulul Albab: Jurnal Studi dan Penelitian Hukum Islam, 4, 81-101. https://doi.org/10.30659/jua.v4i1.10936
[90]  Wald, L. (2009) Solar Radiation Energy (Fundamentals). In: Encyclopedia of Life Support System (EOLSS), Eolss Publishers, 44-99.
[91]  Sampson, R.D. (2001) A Comparison of Photogrammetrically Determined Astronomical Refraction of Sunlight at High Zenith Angles with a Ray-Tracing Computer Model Employing Rawlinson Profiles.
[92]  Goswami, D.Y. (2017) Solar Energy Resources. In: Energy Conversion, CRC Press, 85-136. https://doi.org/10.1201/9781315374192-6
[93]  Stieglitz, R. and Platzer, W. (2024) Solar Radiation. In: Solar Thermal Energy Systems, Springer, 29-120. https://doi.org/10.1007/978-3-031-43173-9_2
[94]  Fouad, M.M., Shihata, L.A. and Morgan, E.I. (2017) An Integrated Review of Factors Influencing the Perfomance of Photovoltaic Panels. Renewable and Sustainable Energy Reviews, 80, 1499-1511. https://doi.org/10.1016/j.rser.2017.05.141
[95]  Balogun, S.W., Oyeshola, H.O., Ajani, A.S., James, O.O., Awodele, M.K., Adewumi, H.K., et al. (2024) Synthesis, Characterization, and Optoelectronic Properties of Zinc Oxide Nanoparticles: A Precursor as Electron Transport Layer. Heliyon, 10, e29452. https://doi.org/10.1016/j.heliyon.2024.e29452
[96]  Zwinkels, J. (2015) Light, Electromagnetic Spectrum. In: Encyclope-dia of Color Science and Technology, Springer, 1-8. https://doi.org/10.1007/978-3-642-27851-8_204-1
[97]  El Ham-moumi, A., Chtita, S., Motahhir, S. and El Ghzizal, A. (2022) Solar PV Energy: From Material to Use, and the Most Commonly Used Techniques to Maximize the Power Output of PV Systems: A Focus on Solar Trackers and Floating Solar Panels. Energy Reports, 8, 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.054
[98]  Shang, H. and Shen, W. (2023) Design and Implementation of a Dual-Axis Solar Tracking System. Energies, 16, Article 6330. https://doi.org/10.3390/en16176330
[99]  Alexandru, C. and Pozna, C. (2010) Simulation of a Dual-Axis Solar Tracker for Improving the Performance of a Photovoltaic Panel. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 224, 797-811. https://doi.org/10.1243/09576509jpe871
[100]  Prinsloo, G.J. (2014) Au-tomatic Positioner and Control System for a Motorized Parabolic Solar. Energy, 82, 462-470.
[101]  Bourogaoui, M., Sethom, H.B.A. and Belkhodja, I.S. (2016) Speed/Position Sensor Fault Tolerant Control in Adjustable Speed Drives—A Review. ISA Transactions, 64, 269-284. https://doi.org/10.1016/j.isatra.2016.05.003
[102]  Terniuk, M.E., Kryvosheia, A.V., Ustynen-ko, O.V., Krasnoshtan, O.M. and Tkach, P.M. (2022) Multiparameter Gears and Gear-Type Variators. In: Advances in Gear Theory and Gear Cutting Tool Design, Springer, 361-443. https://doi.org/10.1007/978-3-030-92262-7_12
[103]  Bernas-coni, P.N., Rust, D.M. and Hakim, D. (2005) Advanced Automated Solar Filament Detection and Characterization Code: De-scription, Performance, and Results. Solar Physics, 228, 97-117. https://doi.org/10.1007/s11207-005-2766-y
[104]  Ce-likel, O. and San, S.E. (2009) Establishment of All Digital Closed-Loop Interferometric Fiber-Optic Gyroscope and Scale Fac-tor Comparison for Open-Loop and All Digital Closed-Loop Configurations. IEEE Sensors Journal, 9, 176-186. https://doi.org/10.1109/jsen.2008.2011066
[105]  Borovic, B., Liu, A.Q., Popa, D., Cai, H. and Lewis, F.L. (2005) Open-Loop versus Closed-Loop Control of MEMS Devices: Choices and Issues. Journal of Micromechanics and Microengi-neering, 15, 1917-1924. https://doi.org/10.1088/0960-1317/15/10/018
[106]  Zi-Yi, L., Sew-Kin, W., Wai-Leong, P. and Chee-Pun, O. (2012) The Design of DC Motor Driver for Solar Tracking Applications. 2012 10th IEEE International Confer-ence on Semiconductor Electronics (ICSE), Kuala Lumpur, 19-21 September 2012, 556-559. https://doi.org/10.1109/smelec.2012.6417207
[107]  Rubio, F.R., Ortega, M.G., Gordillo, F. and López-Martínez, M. (2007) Application of New Control Strategy for Sun Tracking. Energy Conversion and Management, 48, 2174-2184. https://doi.org/10.1016/j.enconman.2006.12.020
[108]  Lee, C., Chou, P., Chiang, C. and Lin, C. (2009) Sun Tracking Sys-tems: A Review. Sensors, 9, 3875-3890. https://doi.org/10.3390/s90503875
[109]  de Rubeis, T., Ragnoli, M., Leoni, A., Ambrosini, D. and Stornelli, V. (2024) A Proposal for a Human-in-the-Loop Daylight Control System—Preliminary Experi-mental Results. Energies, 17, Article 544. https://doi.org/10.3390/en17030544
[110]  Mohamed, A.K.B., Mohamed, H. and Yacob, N.S. (2024) Solar Tracking Control Systems Design Strategies: A Review. AIP Conference Proceedings, Langkawi, 20-21 December 2021, Article 020046. https://doi.org/10.1063/5.0182413
[111]  Sidek, M.H.M., Azis, N., Hasan, W.Z.W., Ab Kadir, M.Z.A., Shafie, S. and Radzi, M.A.M. (2017) Automated Positioning Dual-Axis Solar Tracking System with Preci-sion Elevation and Azimuth Angle Control. Energy, 124, 160-170. https://doi.org/10.1016/j.energy.2017.02.001
[112]  AL-Rousan, N., Isa, N.A.M. and Desa, M.K.M. (2018) Advances in Solar Photovoltaic Tracking Systems: A Review. Renewable and Sustainable Energy Reviews, 82, 2548-2569. https://doi.org/10.1016/j.rser.2017.09.077
[113]  Ferdaus, R.A., Mohammed, M.A., Rahman, S., Salehin, S. and Mannan, M.A. (2014) Energy Efficient Hybrid Dual Axis Solar Tracking System. Journal of Renewable Energy, 2014, 1-12. https://doi.org/10.1155/2014/629717
[114]  Zhou, B., Ahn, D., Lee, J., Sun, C., Ahmed, S. and Kim, Y. (2018) A Passive Tracking System Based on Geometric Constraints in Adaptive Wireless Sensor Networks. Sensors, 18, Article 3276. https://doi.org/10.3390/s18103276
[115]  Alippi, C. and Galperti, C. (2008) An Adaptive System for Optimal Solar Energy Harvesting in Wireless Sensor Network Nodes. IEEE Transactions on Circuits and Systems I: Regular Papers, 55, 1742-1750. https://doi.org/10.1109/tcsi.2008.922023
[116]  Racharla, S. and Rajan, K. (2017) Solar Tracking System—A Review. International Journal of Sustainable Engineering, 10, 72-81.
[117]  Tong, X.C. (2011) Advanced Materials for Thermal Management of Electronic Packaging (Vol. 30). Springer Science & Business Media.
[118]  Mushtaq, H., Khan, A. and Bhatti, H.N. (2024) Basics of Solar Energy Concentrators. Solar Energy Concentrators: Essentials and Applications, 1, 1-31.
[119]  Tilder, L. and Blostein, B. (2010) Design Ecologies: Sustainable Potentials in Architecture: Essays on the Nature of Design. Princeton Architectural Press.
[120]  Salgado-Conrado, L. (2018) A Review on Sun Position Sensors Used in Solar Applications. Renewable and Sustainable Energy Reviews, 82, 2128-2146. https://doi.org/10.1016/j.rser.2017.08.040
[121]  Chowdhury, M.E.H., Khandakar, A., Hossain, B. and Abouhasera, R. (2019) A Low-Cost Closed-Loop Solar Tracking System Based on the Sun Position Algorithm. Journal of Sensors, 2019, 1-11. https://doi.org/10.1155/2019/3681031
[122]  Dadi, V. and Peravali, S. (2020) Optimization of Light-Dependent Resistor Sensor for the Application of Solar Energy Tracking System. SN Applied Sciences, 2, Article No. 1499. https://doi.org/10.1007/s42452-020-03293-x
[123]  Chin, C.S. (2012) Model-Based Simulation of an Intelligent Micro-processor-Based Standalone Solar Tracking System. In: MATLAB—A Fundamental Tool for Scientific Computing and Engi-neering Applications-Volume 3, InTech, 251-278. https://doi.org/10.5772/46458
[124]  Solodovnik, E.V., Liu, S. and Dougal, R.A. (2004) Power Controller Design for Maximum Power Tracking in Solar Installations. IEEE Transactions on Power Electronics, 19, 1295-1304. https://doi.org/10.1109/tpel.2004.833457
[125]  Kumba, K., Upender, P., Buduma, P., Sarkar, M., Simon, S.P. and Gundu, V. (2024) Solar Tracking Systems: Advancements, Challenges, and Future Directions: A Review. Energy Reports, 12, 3566-3583. https://doi.org/10.1016/j.egyr.2024.09.038
[126]  Benzekri, A. and Azrar, A. (2014) FPGA-Based Design Process of a Fuzzy Logic Controller for a Dual-Axis Sun Tracking System. Arabian Journal for Science and Engineering, 39, 6109-6123. https://doi.org/10.1007/s13369-014-1213-5
[127]  Williams, B.C., Ingham, M.D., Chung, S.H. and Elliott, P.H. (2003) Model-Based Programming of Intelligent Embedded Systems and Robotic Space Explorers. Proceedings of the IEEE, 91, 212-237. https://doi.org/10.1109/jproc.2002.805828
[128]  Ray, S. and Tripathi, A.K. (2016) Design and Development of Tilted Single Axis and Azimuth-Altitude Dual Axis Solar Tracking Systems. 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 4-6 July 2016, 1-6. https://doi.org/10.1109/icpeices.2016.7853190
[129]  Musa, A., Alozie, E., Suleiman, S.A., Ojo, J.A. and Imoize, A.L. (2023) A Review of Time-Based Solar Photovoltaic Tracking Systems. Information, 14, Article 211. https://doi.org/10.3390/info14040211
[130]  Afanasyeva, S., Bogdanov, D. and Breyer, C. (2018) Relevance of PV with Single-Axis Tracking for Energy Scenarios. Solar Energy, 173, 173-191. https://doi.org/10.1016/j.solener.2018.07.029
[131]  Karabiber, A. and Güneş, Y. (2023) Single-Motor and Dual-Axis Solar Tracking System for Micro Photovoltaic Power Plants. Journal of Solar Energy Engineering, 145, Article 051004. https://doi.org/10.1115/1.4056739
[132]  Varadharajan, D.P., Kumarasamy, S., Murugesan, R., Muthuramalingam, A., Venkatesan, M. and Nachimuthu, L. (2024) A Comprehensive Review on Single Axis Solar Tracking System Using Artificial Intelligence. In: Advances in Computer and Electrical Engineering, IGI Global, 1-22. https://doi.org/10.4018/979-8-3693-3735-6.ch001
[133]  Demirdelen, T., Alıcı, H., Esenboğa, B. and Güldürek, M. (2023) Performance and Economic Analysis of Designed Different Solar Tracking Systems for Mediterranean Climate. Energies, 16, Article 4197. https://doi.org/10.3390/en16104197
[134]  Kazem, H.A., Chaichan, M.T., Al-Waeli, A.H.A.H. and Sopian, K. (2024) Dual Axis Solar Photovoltaic Trackers: An In-Depth Review. Energy Sources, Part A: Recovery, Utilization, and Envi-ronmental Effects, 46, 15331-15356. https://doi.org/10.1080/15567036.2024.2420781
[135]  Ukoba, K., Olatunji, K.O., Adeoye, E., Jen, T. and Madyira, D.M. (2024) Optimizing Renewable Energy Systems through Artificial Intelligence: Review and Future Prospects. Energy & Environment, 35, 3833-3879. https://doi.org/10.1177/0958305x241256293
[136]  Vieira, R.G., Guerra, F.K.O.M.V., Vale, M.R.B.G. and Araújo, M.M. (2016) Comparative Performance Analysis between Static Solar Panels and Single-Axis Tracking System on a Hot Climate Region Near to the Equator. Renewable and Sustainable Energy Reviews, 64, 672-681. https://doi.org/10.1016/j.rser.2016.06.089
[137]  Sumathi, V., Jayapragash, R., Bakshi, A. and Kumar Akella, P. (2017) Solar Tracking Methods to Maximize PV System Output—A Review of the Methods Adopted in Recent Decade. Renewable and Sustainable Energy Reviews, 74, 130-138. https://doi.org/10.1016/j.rser.2017.02.013
[138]  Vykhnevych, Y. (2024) Improving Solar Energy Efficiency through Tracking Systems: Advantages and Challenges. Věda a Perspektivy, 8.
[139]  Ri-ley, D. and Hansen, C. (2015) Sun-Relative Pointing for Dual-Axis Solar Trackers Employing Azimuth and Elevation Rota-tions. Journal of Solar Energy Engineering, 137, Article 031008. https://doi.org/10.1115/1.4029379
[140]  Lim, B., Lim, C., Li, H., Hu, X., Chong, K., Zong, J., et al. (2020) Industrial Design and Implementation of a Large-Scale Dual-Axis Sun Tracker with a Vertical-Axis-Rotating-Platform and Multiple-Row-Elevation Structures. Solar Energy, 199, 596-616. https://doi.org/10.1016/j.solener.2020.02.006
[141]  Zayed, M.E., Zhao, J., Elsheikh, A.H., Li, W., Sadek, S. and Aboelmaaref, M.M. (2021) A Comprehensive Review on Dish/Stirling Concentrated Solar Power Systems: Design, Optical and Geometrical Analyses, Thermal Performance Assessment, and Applications. Journal of Cleaner Production, 283, Article 124664. https://doi.org/10.1016/j.jclepro.2020.124664
[142]  Kuttybay, N., Mekhilef, S., Koshkarbay, N., Saymbetov, A., Nurgaliyev, M., Dosymbetova, G., et al. (2024) Assessment of Solar Tracking Systems: A Comprehensive Review. Sustainable Energy Technologies and Assessments, 68, Article 103879. https://doi.org/10.1016/j.seta.2024.103879
[143]  Schuh, H. and Böhm, S. (2021) Earth Rotation. In: Encyclopedia of Earth Sciences Series, Springer, 149-155. https://doi.org/10.1007/978-3-030-58631-7_177
[144]  Ismail, F.B., Rahmat, M.A.A., Kazem, H.A., Al-Obaidi, A.S.M. and Ridwan, M.S. (2024) Maximizing Energy via Solar-Powered Smart Irrigation: An Approach Utilizing a Single-Axis Solar Tracking Mechanism. Irrigation and Drainage, 73, 829-845. https://doi.org/10.1002/ird.2937
[145]  Shufat, S.A.A., Kurt, E. and Hancerlioğulları, A. (2019) Modeling and Design of Azimuth-Altitude Dual Axis Solar Tracker for Maximum Solar Energy Generation. International Journal of Renewable Energy Development, 8, 7-13. https://doi.org/10.14710/ijred.8.1.7-13
[146]  Forootan, M.M., Larki, I., Zahedi, R. and Ahmadi, A. (2022) Machine Learning and Deep Learning in Energy Systems: A Review. Sustainability, 14, Article 4832. https://doi.org/10.3390/su14084832
[147]  Ahmad, T., Madonski, R., Zhang, D., Huang, C. and Mujeeb, A. (2022) Da-ta-Driven Probabilistic Machine Learning in Sustainable Smart Energy/Smart Energy Systems: Key Developments, Chal-lenges, and Future Research Opportunities in the Context of Smart Grid Paradigm. Renewable and Sustainable Energy Re-views, 160, Article 112128. https://doi.org/10.1016/j.rser.2022.112128
[148]  Kosovic, I.N., Mastelic, T. and Ivankovic, D. (2020) Using Artificial Intelligence on Environmental Data from Internet of Things for Estimating Solar Radiation: Compre-hensive Analysis. Journal of Cleaner Production, 266, Article 121489. https://doi.org/10.1016/j.jclepro.2020.121489
[149]  Othman, M.F. and Shazali, K. (2012) Wireless Sensor Network Ap-plications: A Study in Environment Monitoring System. Procedia Engineering, 41, 1204-1210. https://doi.org/10.1016/j.proeng.2012.07.302
[150]  Mamodiya, U. and Tiwari, N. (2023) Dual-Axis Solar Tracking Sys-tem with Different Control Strategies for Improved Energy Efficiency. Computers and Electrical Engineering, 111, Article 108920. https://doi.org/10.1016/j.compeleceng.2023.108920
[151]  Salam, A. (2024) Internet of Things for Environ-mental Sustainability and Climate Change. In: Internet of Things, Springer, 33-69. https://doi.org/10.1007/978-3-031-62162-8_2
[152]  Kishorebabu, V. and Sravanthi, R. (2020) Real Time Monitoring of Environmental Parameters Using IoT. Wireless Personal Communications, 112, 785-808. https://doi.org/10.1007/s11277-020-07074-y
[153]  Antonanzas, J., Arbeloa-Ibero, M. and Quinn, J.C. (2019) Compara-tive Life Cycle Assessment of Fixed and Single Axis Tracking Systems for Photovoltaics. Journal of Cleaner Production, 240, Article 118016. https://doi.org/10.1016/j.jclepro.2019.118016
[154]  Hernández-Callejo, L., Gallardo-Saavedra, S. and Alonso-Gómez, V. (2019) A Review of Photovoltaic Systems: Design, Operation and Maintenance. Solar Energy, 188, 426-440. https://doi.org/10.1016/j.solener.2019.06.017
[155]  Manisha, P., Kumari, M., Sahdev, R.K. and Tiwari, S. (2022) A Review on Solar Photovoltaic System Efficiency Improving Technologies. Applied Solar Energy, 58, 54-75. https://doi.org/10.3103/s0003701x22010108
[156]  Peharz, G. and Bett, A.W. (2010) High Concentration Fresnel Lens Assemblies and Systems. In: Solar Cells and Their Applications, Wiley, 331-335.
[157]  Kumar, M., Panda, K.P., Rosas-Caro, J.C., Valderrabano-Gonzalez, A. and Panda, G. (2023) Comprehensive Review of Conventional and Emerging Maximum Power Point Tracking Algorithms for Uniformly and Partially Shaded Solar Photovoltaic Systems. IEEE Access, 11, 31778-31812. https://doi.org/10.1109/access.2023.3262502
[158]  Sabiha, M.A., Saidur, R., Mekhilef, S. and Mahian, O. (2015) Progress and Latest Developments of Evacuated Tube Solar Collectors. Renewable and Sustainable Energy Reviews, 51, 1038-1054. https://doi.org/10.1016/j.rser.2015.07.016
[159]  Hafez, A.Z., Yousef, A.M. and Harag, N.M. (2018) Solar Tracking Systems: Technologies and Trackers Drive Types—A Review. Renewable and Sustainable Energy Reviews, 91, 754-782. https://doi.org/10.1016/j.rser.2018.03.094
[160]  GhaffarianHoseini, A., Dahlan, N.D., Berardi, U., Ghaffari-anHoseini, A., Makaremi, N. and GhaffarianHoseini, M. (2013) Sustainable Energy Performances of Green Buildings: A Re-view of Current Theories, Implementations and Challenges. Renewable and Sustainable Energy Reviews, 25, 1-17.https://doi.org/10.1016/j.rser.2013.01.010
[161]  Saravanan, C., Panneerselvam, M.A. and Christopher, I.W. (2011) A Novel Low Cost Automatic Solar Tracking System. International Journal of Computer Applications, 31, 62-67.
[162]  Marshall, G.J., Mahony, C.P., Rhodes, M.J., Daniewicz, S.R., Tsolas, N. and Thompson, S.M. (2019) Thermal Management of Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview. Engineering, 5, 954-969. https://doi.org/10.1016/j.eng.2019.02.009
[163]  Ajukumar, V.N. and Gandhi, O.P. (2013) Evaluation of Green Mainte-nance Initiatives in Design and Development of Mechanical Systems Using an Integrated Approach. Journal of Cleaner Pro-duction, 51, 34-46. https://doi.org/10.1016/j.jclepro.2013.01.010
[164]  Panagoda, L.P.S.S., Sandeepa, R.A.H.T., Perera, W.A.V.T., Sandunika, D.M.I., Siriwardhana, S.M.G.T., Alwis, M.K.S.D. and Dilka, S.H.S. (2023) Advancements in Photovoltaic (PV) Technology for Solar Energy Generation. Journal of Research Technology & Engineering, 4, 30-72.
[165]  Yang, Z. and Xiao, Z. (2023) A Review of the Sustainable Development of Solar Photovoltaic Tracking System Technology. Energies, 16, Article 7768. https://doi.org/10.3390/en16237768
[166]  Hathaway, D.H. (2015) The Solar Cycle. Living Reviews in Solar Physics, 12, Article No. 4. https://doi.org/10.1007/lrsp-2015-4
[167]  Lai, Y., Chou, M. and Lin, P. (2010) Parameteriza-tion of Topographic Effect on Surface Solar Radiation. Journal of Geophysical Research: Atmospheres, 115, D01104. https://doi.org/10.1029/2009jd012305
[168]  Olson, M. and Rupper, S. (2019) Impacts of Topographic Shading on Direct Solar Radiation for Valley Glaciers in Complex Topography. The Cryosphere, 13, 29-40. https://doi.org/10.5194/tc-13-29-2019
[169]  Liu, M., Bárdossy, A., Li, J. and Jiang, Y. (2012) GIS-Based Modelling of To-pography-Induced Solar Radiation Variability in Complex Terrain for Data Sparse Region. International Journal of Geo-graphical Information Science, 26, 1281-1308. https://doi.org/10.1080/13658816.2011.641969
[170]  Haigh, J.D. (2007) The Sun and the Earth’s Climate. Living Reviews in Solar Physics, 4, Article No. 2. https://doi.org/10.12942/lrsp-2007-2
[171]  Benton, E.R. and Benton, E.V. (2001) Space Radiation Dosimetry in Low-Earth Orbit and Beyond. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Ma-terials and Atoms, 184, 255-294. https://doi.org/10.1016/s0168-583x(01)00748-0
[172]  Kang, H., Kim, H., Hong, J., Zhang, R., Lee, M. and Hong, T. (2024) Harnessing Sunlight Beyond Earth: Sustainable Vision of Space-Based Solar Power Systems in Smart Grid. Renewable and Sustainable Energy Reviews, 202, Article 114644. https://doi.org/10.1016/j.rser.2024.114644
[173]  Aglietti, G.S., Redi, S., Tatnall, A.R. and Markvart, T. (2009) Harnessing High-Altitude Solar Power. IEEE Transactions on Energy Conversion, 24, 442-451. https://doi.org/10.1109/tec.2009.2016026
[174]  Gherboudj, I. and Ghedira, H. (2016) Assessment of Solar Energy Po-tential over the United Arab Emirates Using Remote Sensing and Weather Forecast Data. Renewable and Sustainable Ener-gy Reviews, 55, 1210-1224. https://doi.org/10.1016/j.rser.2015.03.099
[175]  Yoneda, K., Suganuma, N., Yanase, R. and Aldibaja, M. (2019) Automated Driving Recognition Technologies for Adverse Weather Conditions. IATSS Research, 43, 253-262. https://doi.org/10.1016/j.iatssr.2019.11.005
[176]  Milidonis, K., Eliades, A., Grigoriev, V. and Blanco, M.J. (2023) Unmanned Aerial Vehicles (UAVS) in the Planning, Operation and Maintenance of Concentrating Solar Thermal Systems: A Review. Solar Energy, 254, 182-194. https://doi.org/10.1016/j.solener.2023.03.005
[177]  Yang, C., Sun, F., Zou, Y., Lv, Z., Xue, L., Jiang, C., et al. (2024) A Survey of Photovoltaic Panel Overlay and Fault Detection Methods. Energies, 17, Article 837. https://doi.org/10.3390/en17040837
[178]  Kelly, N.A. and Gibson, T.L. (2009) Improved Photovoltaic Energy Output for Cloudy Conditions with a Solar Tracking System. Solar Energy, 83, 2092-2102. https://doi.org/10.1016/j.solener.2009.08.009

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133