All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

Larger Scale Photochemical Bromination of Toluene, 1-Methylnaphthalene and Acetophenone in Aqueous Biphasic System and Applications of the Crude Products in Synthesis

DOI: 10.4236/oalib.1112872, PP. 1-21

Subject Areas: Organic Chemistry

Keywords: Alkylation, Anticancer, Photochemical Bromination, Phase Transfer Catalysis

Full-Text   Cite this paper   Add to My Lib

Abstract

Photochemical bromination of toluene up to 300 mmol per run in aqueous biphasic system formed benzyl bromide of sufficient purity to be used directly for benzylations without any purification. 1-Methylnaphthalene and acetophenone react similarly. An approach to (R) and (S) 1-O-triphenylmethyl-glycerol is presented based on L- and D-xylose.

Cite this paper

Lira, K. K. D. M. , Santos, H. N. L. D. , Nazarenko, A. Y. , Siqueira, E. C. D. and Doboszewski, B. (2025). Larger Scale Photochemical Bromination of Toluene, 1-Methylnaphthalene and Acetophenone in Aqueous Biphasic System and Applications of the Crude Products in Synthesis. Open Access Library Journal, 12, e2872. doi: http://dx.doi.org/10.4236/oalib.1112872.

References

[1]  Oriyama, T., Iwanami, K., Tsukamoto, K., Ichimura, Y. and Koga, G. (1991) Halogenative Allylation and Reduction of Aro-matic Acetals by Double Substitution of Alkoxyl Groups in Acetal. Bulletin of the Chemical Society of Japan, 64, 1410-1412. https://doi.org/10.1246/bcsj.64.1410
[2]  Mitchell, R. and Iyer, V. (1989) An Improved Procedure for Bromomethylation of Aromatics Using Phase-Transfer Catalysis. Rapid Bis-Haloalkylation. Synlett, 1989, 55-57. https://doi.org/10.1055/s-1989-34708
[3]  Bock, K., Pedersen, C., Rasmussen, P., Larsen, C., Nielsen, P.H., Norgård, S., et al. (1976) Reaction of Esters with Dibromomethyl Methyl Ether. Acta Chemica Scandinavica, 30, 172-176. https://doi.org/10.3891/acta.chem.scand.30b-0172
[4]  Khazdooz, L., Zarei, A., Aghaei, H., Azizi, G. and Gheisari, M.M. (2016) An Efficient and Selective Method for the Iodination and Bromination of Alcohols under Mild Conditions. Tetrahe-dron Letters, 57, 168-171. https://doi.org/10.1016/j.tetlet.2015.11.078
[5]  Ajvazi, N. and Stavber, S. (2016) Direct Halogenation of Alcohols with Halosilanes under Catalyst- And Organic Solvent-Free Reaction Conditions. Tetrahedron Let-ters, 57, 2430-2433. https://doi.org/10.1016/j.tetlet.2016.04.083
[6]  Petten, C.F., Kalviri, H.A. and Kerton, F.M. (2015) Halodehydroxylation of Alcohols to Yield Benzylic and Alkyl Halides in Ionic Liquids. Sustainable Chemical Processes, 3, Article No. 16. https://doi.org/10.1186/s40508-015-0043-4
[7]  Das, P.J., Das, J. and Das, D. (2018) An Efficient Conversion of Alcohols to Alkyl Bromides Using Pyridinium Based Ionic Liquids: A Green Alternative to Appel Reaction. Asian Journal of Chemistry, 30, 651-654. https://doi.org/10.14233/ajchem.2018.21086
[8]  Nakamura, H., Usui, T., Kuroda, H., Ryu, I., Matsubara, H., Yasuda, S., et al. (2003) Fluorous Solvent as a New Phase-Screen Medium between Rea-gents and Reactants in the Bromination and Chlorination of Alcohols. Organic Letters, 5, 1167-1169. https://doi.org/10.1021/ol034060w
[9]  Romero, M.A., González-Delgado, J.A. and Arteaga, J.F. (2015) Synthesis of Stil-bene Derivatives: A Comparative Study of Their Antioxidant Activities. Natural Product Communications, 10, 1257-1262. https://doi.org/10.1177/1934578x1501000731
[10]  Jordan, A., Denton, R.M. and Sneddon, H.F. (2020) Development of a More Sustainable Appel Reaction. ACS Sustainable Chemistry & Engineering, 8, 2300-2309. https://doi.org/10.1021/acssuschemeng.9b07069
[11]  Ferreri, C., Costantino, C., Chatgilialoglu, C., Boukherroub, R. and Manuel, G. (1998) The Versatile Behavior of the PdCl2/Et3SiH System. Conversion of Alcohols to the Corresponding Halides and Alkanes. Journal of Organometallic Chemistry, 554, 135-137. https://doi.org/10.1016/s0022-328x(97)00667-0
[12]  Zhu, H., Wei, K., Cui, Y. and Zheng, A. (2020) Method for Pre-paring Bromide from Organic Chloride. CN110922294A.
[13]  Li, X., He, J. and Zhang, Y. (2018) BBr3-Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. The Journal of Organic Chemistry, 83, 11019-11027. https://doi.org/10.1021/acs.joc.8b01628
[14]  Lee, I., Discekici, E.H., Shankel, S.L., Anastasaki, A., Read de Alaniz, J., Hawker, C.J., et al. (2017) Desulfurization-Bromination: Direct Chain-End Modification of RAFT Polymers. Polymer Chemistry, 8, 7188-7194. https://doi.org/10.1039/c7py01702b
[15]  Rathnayake, M.D. and Weaver, J.D. (2019) Alkyl Halides via Visible Light Mediated Dehalogenation. Organic Letters, 21, 9681-9687. https://doi.org/10.1021/acs.orglett.9b03848
[16]  Gandelman, M., Nisnevich, G.A., Kulbitski, K. and Artaryan, A. (2016) Process for the Preparation of Organic Bromides. WO2017060905A1.
[17]  de Almeida, L.S., Esteves, P.M. and de Mattos, M.C.S. (2015) Tribromoisocyanuric Acid as a Green Reagent for Benzylic Bromination of Alkylarenes. Tetrahedron Letters, 56, 6843-6845. https://doi.org/10.1016/j.tetlet.2015.10.081
[18]  Kim, Y. (2021) N-Bromosaccharin. In: e-EROS Ency-clopedia of Reagente for Organic Chemistry, 1-4.
[19]  Moretti, F., Poisson, G. and Marsura, A. (2016) Improved Halogena-tion of Methyl Aromatics and Methyl Heteroaromatics: Unexpected Reactivity of Tetrahalogeno-Diphenylglycolurils. Het-eroatom Chemistry, 27, 173-183. https://doi.org/10.1002/hc.21314
[20]  Torregrosa, R.R.P. (2015) Ammonium Molyb-date. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1-2.
[21]  Fournier, M.J.L. (2001) Tetramethylammonium Tribromide. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1.
[22]  Suzuki, H. and Nishina, Y. (2016) Prepa-ration of Manganese/Graphite Oxide Composite Using Permanganate and Graphite: Application as Catalyst in Bromination of Hydrocarbons. Bulletin of the Chemical Society of Jap an, 90, 74-78. https://doi.org/10.1246/bcsj.20160346
[23]  Xiao, X. and Chen, Y. (2017) Preparation of Benzyl Bromide. CN107098791.
[24]  Petzold, D. and König, B. (2017) Photocata-lytic Oxidative Bromination of Electron‐rich Arenes and Heteroarenes by Anthraquinone. Advanced Synthesis & Catalysis, 360, 626-630. https://doi.org/10.1002/adsc.201701276
[25]  Delgado-Abad, T., Martínez-Ferrer, J., Reig-López, J., Mello, R., Acerete, R., Asensio, G., et al. (2014) On the Ionizing Properties of Supercritical Carbon Dioxide: Uncatalyzed Electro-philic Bromination of Aromatics. RSC Advances, 4, 51016-51021. https://doi.org/10.1039/c4ra10557e
[26]  Podgoršek, A., Stavber, S., Zupan, M. and Iskra, J. (2006) Free Radical Bromination by the H2O2-HBr System on Water. Tetrahedron Letters, 47, 7245-7247. https://doi.org/10.1016/j.tetlet.2006.07.109
[27]  Liu, H., Chen, L., Zhou, F., Zhang, Y., Xu, J., Xu, M., et al. (2019) Anti-oligomerization Sheet Molecules: Design, Synthesis and Evaluation of Inhibitory Activities against Α-Synuclein Aggregation. Bioorganic & Medicinal Chemistry, 27, 3089-3096. https://doi.org/10.1016/j.bmc.2019.05.032
[28]  Crouch, R.D., Pindi, S. and Li, G. (2013) N, N-Dibromobenzenesulfonamide and N. N-Dibromo-P-Toluenesulfonamide. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1-7.
[29]  Lu, W., Zhao, M. and Li, M. (2018) Visible-light-driven Oxidative Mono- and Dibromination of Benzylic Sp3 C-H Bonds with Potassium Bromide/Oxone at Room Temperature. Synthesis, 50, 4933-4939. https://doi.org/10.1055/s-0037-1610651
[30]  Shaw, H., Perlmutter, H.D., Gu, C., Arco, S.D. and Quibuyen, T.O. (1997) Free-radical Bromination of Selected Organic Compounds in Water. The Journal of Organic Chemistry, 62, 236-237. https://doi.org/10.1021/jo950371b
[31]  Ballou, C.E. and Fischer, H.O.L. (1954) A New Synthesis of 2-Phosphoryl-D-Glyceric Acid. Journal of the American Chemical Society, 76, 3188-3193. https://doi.org/10.1021/ja01641a023
[32]  Richtmyer, N.K. (1962) β-D-Altrose. Methods in Carbohydrate Chemistry, 1, 107-113.
[33]  Sletten, E.M. and Liotta, L.J. (2006) A Flexible Stereospecific Synthesis of Polyhydroxylated Pyrrolizidines from Commercially Available Pyranosides. The Journal of Organic Chemistry, 71, 1335-1343. https://doi.org/10.1021/jo051792o
[34]  Niu, B., Shan, J., Wu, X., and Sun, H. (2009) Improved Synthesis of 2, 5 Anhy-dro-3, 4, 6-Tri-O-Benzyl-D-Glucitol. Journal of China Pharmaceutical University, No. 6, 205-208.
[35]  Doboszewski, B. (1997) Synthesis of Homo-C-D4T and Homo-C-thymidine. Nucleosides and Nucleotides, 16, 1049-1052. https://doi.org/10.1080/07328319708006130
[36]  Doboszewski, B. (2009) D-arbinose-based Synthesis of Homo-c-D4T and Homo-c-Thymidine. Nucleosides, Nucleotides and Nucleic Acids, 28, 875-901. https://doi.org/10.1080/15257770903306518
[37]  Bennett, S.M., Ogilvie, K.K. and Roduit, J.P. (1989) Synthesis of Nov-el Isocytosine Pseudonucleotide Analogues. Nucleosides and Nucleotides, 8, 49-64. https://doi.org/10.1080/07328318908054158
[38]  Persky, R. and Albeck, A. (2000) Synthesis of Selectively Labeled D-Fructose and D-Fructose Phosphate Analogues Locked in the Cyclic Furanose Form. The Journal of Organic Chemistry, 65, 5632-5638. https://doi.org/10.1021/jo0003908
[39]  Charette, A.B. and Cote, B. (1993) Asymmetric Cyclopropanation of Allylic Ethers: Cleavage and Regeneration of the Chiral Auxiliary. The Journal of Organic Chemistry, 58, 933-936. https://doi.org/10.1021/jo00056a028
[40]  Aspinall, G.O., Przybylski, E., Ritchie, R.G.S. and Chung, O.W. (1978) Nitrous Acid Deamination of Methylated Amino-Oligosaccharide Glycosides. Carbohydrate Research, 66, 225-243. https://doi.org/10.1016/s0008-6215(00)83255-3
[41]  Guthrie, R., Jenkins, I., Watters, J., Wright, M. and Yamasaki, R. (1982) Synthesis of Some Derivatives of 2, 5-Anhydro-D-Mannitol. Australian Journal of Chemistry, 35, 2169-2173. https://doi.org/10.1071/ch9822169
[42]  Tegdes, A., Medgyes, G., Boros, S. and Kuszmann, J. (2006) Glycosidation of 2, 5-Anhydro-3, 4-Di-O-Benzyl-D-Mannitol with Different Glucopyranosyl Donors. a Comparative Study. Carbohydrate Re-search, 341, 776-781. https://doi.org/10.1016/j.carres.2006.01.028
[43]  Doboszewski, B. and Herdewijn, P. (2011) Simple Approach to 1-O-Protected (R)- and (s)-Glycerols from L- and D-Arabinose for Glycerol Nucleic Acids (GNA) Mono-mers Research. Tetrahedron Letters, 52, 3853-3855. https://doi.org/10.1016/j.tetlet.2011.05.073
[44]  Ashton, W.T., Canning, L.F., Reynolds, G.F., Tolman, R.L., Karkas, J.D., Liou, R., et al. (1985) Synthesis and Antiherpetic Activity of (S)-, (R)-, and (. -.)-9-[(2, 3-Dihydroxy-1-Propoxy)methyl]guanine, Linear Isomers of 2’-Nor-2’-Deoxyguanosine. Journal of Medicinal Chemistry, 28, 926-933. https://doi.org/10.1021/jm00145a014
[45]  Beving, H.F.G., Borén, H.B., Garegg, P.J., Haug, A. and Hagen, G. (1967) Synthesis of 1-O-β-D-Galactofuranosyl-D-Glycerol. Acta Chemica Scandinavica, 21, 2083-2086. https://doi.org/10.3891/acta.chem.scand.21-2083
[46]  Uzawa, H., Nishida, Y., Ohrui, H. and Meguro, H. (1989) Simple Method to Determine the Absolute Configuration of the Glycerol Moiety in Glycosyl Glycerols Based on ORD and CD. Agricultural and Biological Chemistry, 53, 2327-2333. https://doi.org/10.1080/00021369.1989.10869654
[47]  Cardillo, G., Oren, M., Romero, M. and Sandri, S. (1989) Enan-tioselective Synthesis of 2-Benzyloxy Alcohols and 1, 2-Diols via Alkylation of Chiral Glycolate Imides. A Convenient Ap-proach to Optically Active Glycerol Derivatives. Tetrahedron, 45, 1501-1508. https://doi.org/10.1016/0040-4020(89)80148-6
[48]  Kam, B.L. and Oppenheimer, N.J. (1979) Selective Tritylation: A General, One-Step, Method for Synthesis of 5-O-Trityl-D-Pentofuranoses. Carbohydrate Research, 69, 308-310. https://doi.org/10.1016/s0008-6215(00)85783-3
[49]  Amigues, E.J., Greenberg, M.L., Ju, S., Chen, Y. and Migaud, M.E. (2007) Synthesis of Cyclophospho-Glucoses and Glucitols. Tetrahedron, 63, 10042-10053. https://doi.org/10.1016/j.tet.2007.07.027
[50]  Grayson, M. and Keough, P.T. (1960) Phosphonium Compounds. II. De-composition of Phosphonium Alkoxides to Hydrocarbon, Ether and Phosphine Oxide. Journal of the American Chemical So-ciety, 82, 3919-3924. https://doi.org/10.1021/ja01500a033
[51]  King, F.E. and Henshall, T. (1945) 105. the Stereoiso-meric Αα’-Di-(1-Naphthyl)Succinic Acids. Journal of the American Chemical Society, 1945, 417-418. https://doi.org/10.1039/jr9450000417
[52]  Elter, J.K., Biehl, P., Gottschaldt, M. and Schacher, F.H. (2019) Core-Crosslinked Worm-Like Micelles from Polyester-Based Diblock Terpolymer. Polymer Chemistry, 10, 5425-5439. https://doi.org/10.1039/C9PY01054H
[53]  Gati, W., Munyemana, F., Colens, A., Srour, A., Dufour, M., Vardhan Reddy, K.H., et al. (2020) A Mild Method for the Replacement of a Hydroxyl Group by Halogen: 2. Unified Procedure and Stereo-chemical Studies. Tetrahedron, 76, Article ID: 131441. https://doi.org/10.1016/j.tet.2020.131441
[54]  Joseph, K.M. and Larraza-Sanchez, I. (2011) Synthesis of Benzyl Bromides with Hexabromoacetone: An Alternative Path to Drug Intermedi-ates. Tetrahedron Letters, 52, 13-16. https://doi.org/10.1016/j.tetlet.2010.10.133
[55]  Cui, X., Guan, Y., Li, N., Lv, H., Fu, L., Guo, K., et al. (2014) A Mild and Efficient Method for Bromination of Alcohols Using Α, Α-Dibromo-Β-Dicarbonyl Com-pounds as Halogen Sources. Tetrahedron Letters, 55, 90-93. https://doi.org/10.1016/j.tetlet.2013.10.120
[56]  Heropoulos, G.A., Cravotto, G., Screttas, C.G. and Steele, B.R. (2007) Contrasting Chemoselectivities in the Ultrasound and Microwave Assisted Bromination Reactions of Substituted Alkylaro-matics with N-bromosuccinimide. Tetrahedron Letters, 48, 3247-3250. https://doi.org/10.1016/j.tetlet.2007.03.023
[57]  Bullpitt, M., Kitching, W., Doddrell, D. and Adcock, W. (1976) Substit-uent Effect of the Bromomethyl Group. Carbon-13 Magnetic Resonance Study. The Journal of Organic Chemistry, 41, 760-766. https://doi.org/10.1021/jo00867a003
[58]  Waykole, L., Prashad, M., Palermo, S., Repic, O. and Blacklock, T.J. (1997) Selective Benzylic Bromination of 2-methylnaphthalene. Synthetic Communications, 27, 2159-2163. https://doi.org/10.1080/00397919708006823
[59]  Kajigaeshi, S., Kakinami, T., Tanaka, T., Moriwaki, M. and Fujisaki, S. (1988) Benzylic Bromination of Arenes by Use of Benzylmethylammonium Tribromide. ChemXPress, 3, 347-350.
[60]  Ghorbani-Vaghei, R., Chegini, M., Veisi, H. and Karimi-Tabar, M. (2009) Poly(n, n’-Dibromo-N-Ethyl-Benzene-1, 3-Disulfonamide), N, n, n’, n’-Tetrabromobenzene-1, 3-Disulfonamide and Novel Poly(n, n’-Dibromo-N-Phenylbenzene-1, 3-Disulfonamide) as Powerful Reagents for Benzylic Bromination. Tetrahedron Letters, 50, 1861-1865. https://doi.org/10.1016/j.tetlet.2009.02.007
[61]  Sun, J., Peng, X. and Guo, H. (2015) Studies on Photoin-duced Carbon-Silicon Bond Cleavage and Subsequent Bromination Reaction. Chinese Journal of Organic Chemistry, 35, 1375-1379. https://doi.org/10.6023/cjoc201412028
[62]  Gross, H. and Keitel, I. (1969) Zur Darstellung von N-Hydroxyphthalimid und N‐Hydroxysuccinimid. Journal für Praktische Chemie, 311, 692-693. https://doi.org/10.1002/prac.19693110424
[63]  Lee, J.M., Park, E.J., Cho, S.H. and Chang, S. (2008) Cu-Facilitated C-O Bond Formation Using n-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C-H Bonds. Journal of the American Chemical Society, 130, 7824-7825. https://doi.org/10.1021/ja8031218
[64]  Todesco, R., Gelan, J., Martens, H., Put, J. and De Schryver, F.C. (1983) Photochemistry of Non-Conjugated Bichromophoric Systems. Tetrahe-dron, 39, 1407-1413. https://doi.org/10.1016/s0040-4020(01)91912-x
[65]  Cowper, R.M. and Davidson, L.H. (1943) Phenacyl Bromide. Organic Syntheses, 2, 480-482.
[66]  Rather, J.B. and Reid, E.E. (1919) The Identification of Acids. IV. Phenacyl Esters. Journal of the American Chemical Society, 41, 75-83. https://doi.org/10.1021/ja01458a009
[67]  Kumar, A., Kurbah, S.D., Syiemlieh, I., Dhanpat, S.A., Borthakur, R. and Lal, R.A. (2021) Synthesis, Characterization, Reactivity, and Catalytic Studies of Heterobimetallic Vanadium(v) Complexes Con-taining Hydrazone Ligands. Inorganica Chimica Acta, 515, Article ID: 120068. https://doi.org/10.1016/j.ica.2020.120068
[68]  Lv, H., Yang, X., Wang, B., Yang, H., Wang, X. and Wang, Z. (2021) Chiral Bidentate Phosphoramidite-Pd Catalyzed Asymmetric Decarboxylative Dipolar Cycloaddition for Multistereogenic Tetrahy-drofurans with Cyclic n-Sulfonyl Ketimine Moieties. Organic Letters, 23, 4715-4720. https://doi.org/10.1021/acs.orglett.1c01411
[69]  Wang, F., Liu, H. and Liu, Y. (2025) Green Preparation of Aromatic Ox-ygen-Containing Compounds by Photocatalytic Cracking of Lignin. Patent CN119263965.
[70]  Li, S., Zhu, B., Lee, R., Qiao, B. and Jiang, Z. (2018) Visible Light-Induced Selective Aerobic Oxidative Transposition of Vinyl Halides Using a Tetra-halogenoferrate(III) Complex Catalyst. Organic Chemistry Frontiers, 5, 380-385. https://doi.org/10.1039/c7qo00798a
[71]  Wang, J., Zhang, C., Ye, X., Du, W., Zeng, S., Xu, J., et al. (2021) An Efficient and Practical Aerobic Oxidation of Benzylic Methylenes by Recyclable n-Hydroxyimide. RSC Advances, 11, 3003-3011. https://doi.org/10.1039/d0ra10475b
[72]  Wang, Y., Li, P., Wang, J., Liu, Z., Wang, Y., Lu, Y., et al. (2021) Visible-Light Photocatalytic Selective Oxidation of C(sp3)-H Bonds by Anion-Cation Dual-Metal-Site Nanoscale Localized Carbon Nitride. Catalysis Science & Technology, 11, 4429-4438. https://doi.org/10.1039/d1cy00328c
[73]  Huang, Z., Guan, R., Shanmu-gam, M., Bennett, E.L., Robertson, C.M., Brookfield, A., et al. (2021) Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst. Journal of the American Chemical Society, 143, 10005-10013. https://doi.org/10.1021/jacs.1c05757
[74]  Fu, W., Tan, P., Deng, W. and Xiang, J. (2017) Efficient Hydrolysis of Haloal-kynes to α-Haloketones in Ionic Liquid. Chinese Journal of Organic Chemistry, 37, 1501-1505. https://doi.org/10.6023/cjoc201610031
[75]  Wang, Z., Wang, L., Wang, Z., Li, P. and Zhang, Y. (2021) A Practical Syn-thesis of α-Bromo/Iodo/Chloroketones from Olefins under Visible-Light Irradiation Conditions. Chinese Chemical Letters, 32, 429-432. https://doi.org/10.1016/j.cclet.2020.02.022
[76]  Lin, X., Fang, C., Huang, X. and Xiao, X. (2021) 1, 1, 2-Tribromoethyl Arenes: Novel and Highly Efficient Precursors for the Synthesis of 1-Bromoalkynes and α-Bromoketones. Organic Chemistry Frontiers, 8, 4387-4391. https://doi.org/10.1039/d1qo00793a
[77]  Ramirez, F. and Dershowitz, S. (1957) Phosphinemethylenes. II. Triphenylphosphineacylmethylenes. The Journal of Organic Chemistry, 22, 41-45. https://doi.org/10.1021/jo01352a010
[78]  Doboszewski, B. and Herdewijn, P. (2012) 1, 2; 3, 4-Di-O-Isopropylidene-L-Galactose Synthesis from Its D-Enantiomer. Tetrahedron Letters, 53, 2253-2256. https://doi.org/10.1016/j.tetlet.2012.02.091
[79]  van Boeckel, C.A.A., Visser, G.M. and van Boom, J.H. (1985) Synthesis of Phosphatidyl-β-Glucosyl Glycerol Containing a Dioleoyl Diglyceride Moiety. Tetrahedron, 41, 4557-4565. https://doi.org/10.1016/s0040-4020(01)82350-4
[80]  Gisbertz, S. and Pieber, B. (2020) Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 4, 456-475. https://doi.org/10.1002/cptc.202000014
[81]  Doboszewski, B., Bez-erra da Silva, G., dos Santos Aguiar, J. and Barroso de Oliveira, E. (2023) Synthesis and Anticancer/Antiproliferative Prop-erties of Unpublished Compounds with a Structure of (R) 1, 2-Bis-(1-Naphthylmethyl)-Glycerol, (S) 1, 2-Bis-(1-Naphthylmethyl)-Glycerol, Bis-(1-Naphthylmethyl)-Pentaerythritol, ((Bis 1-Naphthyloxy)-Methyl)Benzene and 8-Benzyloxy-N-Benzyl Bromide. Patent Application BR 1020230221440.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133