全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Applying K-Means Clustering and Fuzzy C-Means Clustering in Vehicle Crashes

DOI: 10.4236/oalib.1112856, PP. 1-11

Subject Areas: Applications of Communication Systems, Machine Learning, Numerical Methods, Technology, Information Management

Keywords: Clustering, K-Means, Fuzzy C-Means, Vehicle Crashes, Dunn’s Partition Coefficient, Machine Learning

Full-Text   Cite this paper   Add to My Lib

Abstract

Clustering is an unsupervised machine learning technique used to organize unlabeled data into groups based on similarity. This paper applies the K-means and Fuzzy C-means clustering algorithms to a vehicle crash dataset in order to explore various patterns in the data. K-means assigns data points to clusters based on the similarity between the data point and the cluster centroids, which results in partitioning the data into distinct clusters. On the other hand, fuzzy C-means clustering allows data points to belong to multiple clusters simultaneously with varying degrees of membership, providing a more diverse representation of the data. Results show that while K-means clustering is simpler and easier to interpret, fuzzy C-means clustering offers more flexibility and can manage situations where data points may have more cluster assignments.

Cite this paper

Abdulhafedh, A. (2025). Applying K-Means Clustering and Fuzzy C-Means Clustering in Vehicle Crashes. Open Access Library Journal, 12, e2856. doi: http://dx.doi.org/10.4236/oalib.1112856.

References

[1]  Hastie, T., Tibshirani, R. and Friedman, J. (2008) The Elements of Statistical Learning. Springer.
[2]  Lawless, J.F. (2002) Statistical Models and Methods for Lifetime Data. John Wiley & Sons, Inc. https://doi.org/10.1002/9781118033005
[3]  Abdulhafedh, A. (2021) In-corporating K-Means, Hierarchical Clustering and PCA in Customer Segmenta-tion. Journal of City and Development, 3, 12-30.
[4]  Imbens, G.W. and Rubin, D.B. (2015) Causal Inference for Statistics, Social, and Biomedical Sciences. Cambridge University Press. https://doi.org/10.1017/cbo9781139025751
[5]  Waggoner, P.D. (2020) Unsupervised Machine Learning for Clustering in Political and Social Research. Cambridge University Press. https://doi.org/10.1017/9781108883955
[6]  Bradford Tuckfield (2019) Applied Unsupervised Learning with R: Uncover Hidden Relationships and Pat-terns with K-Means Clustering, Hierarchical Clustering, and PCA. Packt Pub-lishing.
[7]  Colins, M. (2017) Machine Learning: An Introduction to Super-vised and Un-Supervised Learning Algorithms. CreateSpace.
[8]  Celebi, M.E. and Aydin, K. (2016) Unsupervised Learning Algorithms. Spring-er.
[9]  Ever-Hadani, S. (1980) Applications of Cluster Analysis Algorithm to Geostatistical Series. Regional Science and Urban Economics, 10, 123-151. https://doi.org/10.1016/0166-0462(80)90052-6
[10]  Ghosh, S. and Dubey, S.K. (2013) Comparative Analysis of K-Means and Fuzzy C-Means Algorithms. International Journal of Advanced Computer Science and Applications, 4, 35-39. https://doi.org/10.14569/ijacsa.2013.040406
[11]  Hamerly, G. and Elkan, C. (2002) Alternatives to the K-Means Algorithm that Find Better Clus-terings. Proceedings of the Eleventh International Conference on Information and Knowledge Management, New York, 4-9 November 2002, 600-607. https://doi.org/10.1145/584792.584890
[12]  Bezdek, J.C. (1981) Pattern Recognition with Fuzzy Objective Function Algorithms. Springer.
[13]  Bradley, P.S. and Fayyad, U.M. (1998) Refining Initial Points for K-Means Clustering. Proceedings of the 15th International Conference on Machine Learning, Madi-son, 24-27 July 1998, 91-99.
[14]  Kalton, A., Langley, P., Wagstaff, K. and Yoo, J. (2001) Generalized Clustering, Supervised Learning, and Data Assign-ment. Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 26-29 August 2001, 299-304. https://doi.org/10.1145/502512.502555
[15]  Kearns, M., Mansour, Y. and Ng, A.Y. (1997) An Information-Theoretic Analysis of Hard and Soft Assignment Methods for Clustering. Proceedings of the 13th Confer-ence on Uncertainty in Artificial Intelligence (UAI1997), Providence, 1-3 Au-gust 1997, 282-293.
[16]  Pelleg, D. and Moore, A. (2000) X-Means: Extend-ing K-Means with Efficient Estima-tion of the Number of Clusters. Proceedings of the 17th International Conference on Machine Learning (ICML2000), Stan-ford, 29 June-2 July 2000, 727-734.
[17]  Cannon, R.L., Dave, J.V. and Bezdek, J.C. (1986) Efficient Implementation of the Fuzzy C-Means Clustering Algo-rithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8, 248-255. https://doi.org/10.1109/tpami.1986.4767778
[18]  Cebeci, Z. and Yildiz, F. (2015) Comparison of K-Means and Fuzzy C-Means Algorithms on Different Cluster Structures. Journal of Agricultural Informatics, 6, 13-23. https://doi.org/10.17700/jai.2015.6.3.196
[19]  Cai, W., Chen, S. and Zhang, D. (2007) Fast and Robust Fuzzy C-Means Clustering Algorithms Incorporating Local Information for Image Segmentation. Pattern Recognition, 40, 825-838. https://doi.org/10.1016/j.patcog.2006.07.011
[20]  Dhanachandra, N., Manglem, K. and Chanu, Y.J. (2015) Image Segmentation Using K-Means Clus-tering Algorithm and Subtractive Clustering Algorithm. Procedia Computer Sci-ence, 54, 764-771. https://doi.org/10.1016/j.procs.2015.06.090
[21]  Gath, I. and Geva, A.B. (1989) Unsupervised Optimal Fuzzy Clustering. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 11, 773-780. https://doi.org/10.1109/34.192473
[22]  Kim, D., Lee, K.H. and Lee, D. (2004) On Cluster Validity Index for Estimation of the Optimal Number of Fuzzy Clusters. Pattern Recognition, 37, 2009-2025. https://doi.org/10.1016/j.patcog.2004.04.007
[23]  Liu, Y., Li, Z., Xiong, H., Gao, X. and Wu, J. (2010) Understanding of Internal Clustering Validation Measures. 2010 IEEE International Conference on Data Mining, Sydney, 13-17 December 2010, 911-916. https://doi.org/10.1109/icdm.2010.35
[24]  Ng, H.P., Ong, S.H., Foong, K.W.C., Goh, P.S. and Nowinski, W.L. Medical Image Seg-mentation Using K-Means Clustering and Improved Watershed Algorithm. 2006 IEEE Southwest Symposium on Image Analysis and Interpretation, Den-ver, 26-28 March 2006, 61-65. https://doi.org/10.1109/ssiai.2006.1633722
[25]  Wu, K. (2012) Analysis of Parameter Selections for Fuzzy C-Means. Pattern Recognition, 45, 407-415. https://doi.org/10.1016/j.patcog.2011.07.012
[26]  Xie, X.L. and Beni, G. (1991) A Validity Measure for Fuzzy Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13, 841-847. https://doi.org/10.1109/34.85677
[27]  Hamerly, G.J. (2003) Learning Structure and Concepts in Data through Data Clus-tering. University of Califor-nia.
[28]  Ruspini, E.H., Bezdek, J.C. and Keller, J.M. (2019) Fuzzy Clustering: A Historical Perspective. IEEE Computational Intelligence Magazine, 14, 45-55. https://doi.org/10.1109/mci.2018.2881643
[29]  Dunn, J.C. (1974) Well-Separated Clusters and Optimal Fuzzy Partitions. Journal of Cybernetics, 4, 95-104. https://doi.org/10.1080/01969727408546059
[30]  Kaufman, L. and Rousseeuw, P.J. (1990) Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley & Sons, Inc. https://doi.org/10.1002/9780470316801

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133