全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Development of Eco-Friendly Composite Material for Pinewood Replacement Using Agricultural Waste

DOI: 10.4236/oalib.1112619, PP. 1-25

Subject Areas: Environmental Sciences, Agricultural Science, Chemical Engineering & Technology

Keywords: Polylactic Acid, Husks, Zeolite, Injection Molding Process, 3-aminopropyltriethoxysilane (C9H23NO3Si), Potassium Hydroxide (KOH)

Full-Text   Cite this paper   Add to My Lib

Abstract

The demand for wood products contributes greatly to deforestation, resulting in severe environmental effects. Each year, almost 18 million acres of forest are destroyed, which is equivalent to 27 soccer fields vanishing every minute. This rapid deforestation exacerbates climate change, habitat loss, and natural resource depletion. As a result, finding alternatives to traditional wood for building applications such as doors, windows, roofing, beams, furniture, and packaging is essential. This study looked at replacing pinewood with a composite manufactured from agricultural waste, such as rice husks, wheat husks, and safflower husks, together with polylactic acid and zeolite. Alkaline and silane treatment improved the composite’s mechanical and thermal characteristics. This study found that composite 1 from multi-husk and composite 4 from single husk had the highest mechanical properties, such as tensile strength (38.46 MPa & 42.4 MPa), flexural strength (62.9 MPa & 69.2 MPa), and compression strength (49.48 MPa & 46.06 MPa). Similarly, multi-husk Composite 1 has shown the highest thermal properties, such as heat deflection temperature (52.9℃) and differential scanning calorimetry (172.7), among other composites. The addition of zeolite powder in small quantities (5, 7.5, 10 w%) has proved minimal or no effect on the overall thermal stability of the composite. 

Cite this paper

Tammali, P. K. , Schuster, J. and Shaik, Y. P. (2024). Development of Eco-Friendly Composite Material for Pinewood Replacement Using Agricultural Waste. Open Access Library Journal, 11, e2619. doi: http://dx.doi.org/10.4236/oalib.1112619.

References

[1]  FAO (2024) FAO Cereal Supply and Demand Brief. https://www.fao.org/worldfoodsituation/csdb/en
[2]  Wikipedia Contributors (2024, August 12) Safflower. https://en.wikipedia.org/w/index.php?title=Safflower&oldid=1239858762
[3]  Kordi, M., Farrokhi, N., Pech-Canul, M.I. and Ahmadikhah, A. (2024) Rice Husk at a Glance: From Agro-Industrial to Modern Applications. Rice Science, 31, 14-32. https://doi.org/10.1016/j.rsci.2023.08.005
[4]  Faruk, O. and Ain, M.S. (2013) Biofi-ber Reinforced Polymer Composites for Structural Applications. In: Uddin, N., Ed., Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, Elsevier, 18-53. https://doi.org/10.1533/9780857098955.1.18
[5]  Farah, S., Ander-son, D.G. and Langer, R. (2016) Physical and Mechanical Properties of PLA, and Their Functions in Widespread Applications—A Comprehensive Review. Advanced Drug Delivery Reviews, 107, 367-392. https://doi.org/10.1016/j.addr.2016.06.012
[6]  Badia, J.D. and Ribes-Greus, A. (2016) Mechanical Recycling of Polylactide, Upgrading Trends and Combination of Valorization Techniques. European Polymer Journal, 84, 22-39. https://doi.org/10.1016/j.eurpolymj.2016.09.005
[7]  Narattha, C., Wattanasiriwech, S. and Wattanasiriwech, D. (2022) Thermal and Mechanical Characterization of Fly Ash Geopolymer with Aluminium Chloride and Potassium Hydroxide Treated Hemp Shiv Lightweight Aggregate. Construction and Building Materials, 331, Article ID: 127206. https://doi.org/10.1016/j.conbuildmat.2022.127206
[8]  Tran, T.P.T., Bénézet, J. and Bergeret, A. (2014) Rice and Einkorn Wheat Husks Reinforced Poly(Lactic Acid) (PLA) Biocomposites: Effects of Alkaline and Silane Surface Treatments of Husks. Industrial Crops and Products, 58, 111-124. https://doi.org/10.1016/j.indcrop.2014.04.012
[9]  Dobrzyńska-Mizera, M., Knitter, M., Woźniak-Braszak, A., Baranowski, M., Sterzyński, T. and Di Lorenzo, M.L. (2020) Poly(L-Lactic Acid)/Pine Wood Bio-Based Composites. Materials, 13, Article No. 3776. https://doi.org/10.3390/ma13173776
[10]  Yue, Z., Wang, H., Zhang, M. and Wang, M. (2022) Mechanical, Thermal and Rheological Properties of Polylactic Acid (PLA)/Epichlorohydrin Modified Pine Wood Flour (EWF) Composites. Europe-an Journal of Wood and Wood Products, 80, 1111-1120. https://doi.org/10.1007/s00107-022-01810-w
[11]  Vila, C., Campos, A.R., Cristovão, C., Cunha, A.M., Santos, V. and Parajó, J.C. (2008) Sustainable Biocomposites Based on Autohydrolysis of Lignocellulosic Substrates. Composites Science and Technology, 68, 944-952. https://doi.org/10.1016/j.compscitech.2007.08.006
[12]  Yuzay, I.E., Au-ras, R. and Selke, S. (2009) Poly(Lactic Acid) and Zeolite Composites Prepared by Melt Processing: Morphological and Physical-Mechanical Properties. Journal of Ap-plied Polymer Science, 115, 2262-2270. https://doi.org/10.1002/app.31322
[13]  Sawpan, M.A., Pickering, K.L. and Fernyhough, A. (2011) Improvement of Mechanical Performance of Industrial Hemp Fibre Reinforced Polylactide Biocomposites. Composites Part A: Applied Science and Manufacturing, 42, 310-319. https://doi.org/10.1016/j.compositesa.2010.12.004
[14]  Castaño, J., Rodríguez-Llamazares, S., Carrasco, C. and Bouza, R. (2012) Physical, Chemical and Mechanical Properties of Pehuen Cellulosic Husk and Its Pehuen Starch Based Com-posites. Carbohydrate Polymers, 90, 1550-1556. https://doi.org/10.1016/j.carbpol.2012.07.029
[15]  Koutsomitopoulou, A.F., Bénézet, J.C., Bergeret, A. and Papanicolaou, G.C. (2014) Preparation and Characterization of Olive Pit Powder as a Filler to Pla-Matrix Bio-composites. Powder Technology, 255, 10-16. https://doi.org/10.1016/j.powtec.2013.10.047
[16]  Hao, Y., Huang, Z., Wang, J., Yang, X., Fan, X., Li, Y., et al. (2016) Improved Thermal Stability of Poly(l-Lactide) with the Incorporation of Zeolite ZSM-5. Polymer Testing, 49, 46-56. https://doi.org/10.1016/j.polymertesting.2015.11.010
[17]  Krishnasamy, S., Thiaga-mani, S.M.K., Muthu Kumar, C., Nagarajan, R., R.M., S., Siengchin, S., et al. (2019) Recent Advances in Thermal Properties of Hybrid Cellulosic Fiber Reinforced Polymer Composites. International Journal of Biological Macromolecules, 141, 1-13. https://doi.org/10.1016/j.ijbiomac.2019.08.231
[18]  Muthuraj, R., Lacoste, C., Lacroix, P. and Bergeret, A. (2019) Sustainable Thermal Insulation Biocomposites from Rice Husk, Wheat Husk, Wood Fibers and Textile Waste Fibers: Elaboration and Perfor-mances Evaluation. Industrial Crops and Products, 135, 238-245. https://doi.org/10.1016/j.indcrop.2019.04.053
[19]  Narlıoğlu, N., Salan, T. and Alma, M.H. (2021) Properties of 3D-Printed Wood Sawdust-Reinforced PLA Composites. BioResources, 16, 5467-5480. https://doi.org/10.15376/biores.16.3.5467-5480
[20]  Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., et al. (2021) Critical Review of FDM 3D Printing of PLA Biocomposites Filled with Biomass Resources, Characterization, Bio-degradability, Upcycling and Opportunities for Biorefineries. Applied Materials Today, 24, Article ID: 101078. https://doi.org/10.1016/j.apmt.2021.101078
[21]  Kumar, A.M., Jayakumar, K. and Shalini, M. (2023) Enhancing the Performance of Polylactic Acid (PLA) Reinforcing with Sawdust, Rice Husk, and Bagasse Particles. Journal of Polymer Materials, 39, 269-281. https://doi.org/10.32381/jpm.2022.39.3-4.7
[22]  Abraha, K.G., Debeli, D.K., Ghani, M.U., Tesfahunegn, A.A. and Guo, J. (2024) Exploring the Potential of Agricultural Waste Enset Fibers Reinforced Poly Lactic Acid Biocomposites. Industrial Crops and Products, 221, Article ID: 119322. https://doi.org/10.1016/j.indcrop.2024.119322

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133