全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Quantum Measurement, the Simplest Interpretation

DOI: 10.4236/oalib.1112536, PP. 1-12

Subject Areas: Quantum Mechanics, Quantum Physics

Keywords: Quantum Measurement, Projection of State, Collapse of the Wave Function, Interpretations of Quantum Mechanics

Full-Text   Cite this paper   Add to My Lib

Abstract

Many different interpretations of the Quantum Theory have appeared over the one hundred years since its first formulation. The paper presents a detailed physical analysis of the process of quantum measurement, which is crucial in the development of a sound interpretation of the theory. The process of quantum measurement can be decomposed into three elementary steps, and the projection of state (or collapse of the wave function) is applied at the last step, the reading of the result of measurement by an observer. This determines a crystal clear simplest interpretation of the process and the alternative interpretation, supported by many interpretations of the theory, is obviously much more complex, so that Ockham’s razor can be applied. Once this is established, a corresponding interpretation of the quantum state follows. We discuss some important issues as the superposition of states (or Schrodinger cat states), the wave particle duality and the non-local process associated to entanglement. In conclusion, many of the proposed interpretations of Quantum Mechanics appeared along the last decades can be firmly rejected, but there are open questions.

Cite this paper

Ló, C. and pez (2024). Quantum Measurement, the Simplest Interpretation. Open Access Library Journal, 11, e2536. doi: http://dx.doi.org/10.4236/oalib.1112536.

References

[1]  Heisenberg, W. (1925) über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Zeitschrift für Physik, 33, 879-893. https://doi.org/10.1007/bf01328377
[2]  Schrödinger, E. (1926) Quantisierung als Eigen-wertproblem. Annalen der Physik, 384, 361-376. https://doi.org/10.1002/andp.19263840404
[3]  von Neumann, J. and Wheeler, N.A. (1932) Mathematical Foundations of Quantum Mechanics. New Edition (2018), Translated by Robert T. Beyer, Princeton University Press.
[4]  Cabello, A. (2017) Interpretations of Quantum Theory: A Map of Madness. In: Lombardi, O., Fortin, S., Holik, F. and Lopez, C., Eds., What Is Quantum Information, Cambridge University Press, 138.
[5]  Everett, H. (1957) “Relative State” Formulation of Quantum Mechanics. Reviews of Modern Physics, 29, 454-462. https://doi.org/10.1103/revmodphys.29.454
[6]  Fuchs, C.A. and Schack, R. (2013) Quantum-Bayesian Co-herence. Reviews of Modern Physics, 85, 1693-1715. https://doi.org/10.1103/revmodphys.85.1693
[7]  Fuchs, C.A. (2002) Quantum Mechanics as Quantum Information (and Only a Little More). In: Khrennikov, A., Ed., Quantum Theory: Reconsideration of Foundations, Växjö University Press, 463-543.
[8]  Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics Physique Fizika, 1, 195-200. https://doi.org/10.1103/physicsphysiquefizika.1.195
[9]  Schrödinger, E. (1935) Die gegenwärtige Situation in der Quantenmechanik. Die Naturwissenschaften, 23, 807-812. https://doi.org/10.1007/bf01491891
[10]  De Broglie, L. (1923) Waves and Quanta. Nature, 112, 540-540. https://doi.org/10.1038/112540a0
[11]  López, C. (2024) Wave Particle Duality: De Broglie Waves in Indirect Quantum Measurements. OALib, 11, 1-8. https://doi.org/10.4236/oalib.1111202

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133