全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Practical UNet Denoising Algorithm for Enhanced Malaria Detection in Thick Blood Smear Images

DOI: 10.4236/oalib.1112487, PP. 1-19

Subject Areas: Computer Vision

Keywords: Malaria Diagnosis, Image Denoising, UNet Architecture, Deep Learning, Medical Image Processing, Gaussian Noise, Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR), Microscopy Images, Noise Reduction, Biomedical Imaging, Image Preprocessing, Data Augmentation, High-Pass Filtering, Fourier Transform, Signal-to-Noise Ratio (SNR), Pixel Intensity Distribution, Image Quality Metrics, Neural Networks, Clinical Image Enhancement

Full-Text   Cite this paper   Add to My Lib

Abstract

This paper discusses the task of enhancing malaria detection in thick blood smear images by proposing a UNet-based denoising algorithm. Noise and artifacts in these images can compromise the accuracy of malaria diagnosis. The algorithm, based on the UNet architecture, is developed to remove noise and artifacts, facilitating easier and more accurate identification of malaria parasites. Various preprocessing techniques, including median filters, mean filters, and morphological filters, are explored to mitigate prevalent noise types like speckle, Gaussian, and salt-and-pepper noise. The significance of denoising lies in its potential to minimize misdiagnoses that contribute to false positives and negatives in malaria-related cases, thereby reducing unnecessary drug administration and potential health complications. The proposed UNet denoising algorithm is trained on datasets containing both noisy and clean thick blood smear images. Evaluation against existing denoising methods demonstrates superior performance in terms of denoising quality and malaria detection accuracy. The outcomes reveal the algorithm’s effectiveness in improving the accuracy of malaria diagnosis by effectively removing noise and artifacts from thick blood smear images. The UNet denoising algorithm showed a Structured Similarity Index of 0.92 on average with a minimum SSIM of 0.78 and a maximum SSIM of 0.98. When the images from the dataset with these results were fed into a malaria parasite detection model, model yielded a precision was 0.75, indicating that 75% of the identified “Parasites” are correct, recall of 1.00, meaning that all instances of “Parasites” were correctly identified and an F1-Score of 0.86 demonstrating a balance between precision and recall for the “Parasites” class. This paper underscores the practicality and efficacy of the UNet-based denoising algorithm as a promising solution for enhancing malaria detection in thick blood smear images, offering a significant stride towards more accurate and reliable diagnostics in the fight against malaria.

Cite this paper

Bright, B. (2025). A Practical UNet Denoising Algorithm for Enhanced Malaria Detection in Thick Blood Smear Images. Open Access Library Journal, 12, e12487. doi: http://dx.doi.org/10.4236/oalib.1112487.

References

[1]  Poostchi, M., Silamut, K., Maude, R.J., Jaeger, S. and Thoma, G. (2018) Image Analysis and Machine Learning for Detecting Malaria. Translational Research, 194, 36-55. https://doi.org/10.1016/j.trsl.2017.12.004
[2]  Shambhu, S., Koundal, D., Das, P., Hoang, V.T., Tran-Trung, K. and Turabieh, H. (2022) Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear Images: Recent Advances. Computational Intelligence and Neuroscience, 2022, 1-18. https://doi.org/10.1155/2022/3626726
[3]  Vilimek, D., Ku-bicek, J., Golian, M., Jaros, R., Kahankova, R., Hanzlikova, P., et al. (2022) Com-parative Analysis of Wavelet Transform Filtering Systems for Noise Reduction in Ultrasound Images. PLOS ONE, 17, e0270745. https://doi.org/10.1371/journal.pone.0270745
[4]  Ronzitti, E., Vicidomini, G., Zanacchi, F.C. and Diaspro, A. (2011) Improving Image Formation by Push-ing the Signal-to-Noise Ratio. In: Diaspro, A. Ed., Optical Fluorescence Microsco-py, Springer, 101-110. https://doi.org/10.1007/978-3-642-15175-0_6
[5]  World Health Organiza-tion (2021) World Malaria Report 2021, Regional Data and Trends, 15. https://www.who.int/publications/i/item/9789240040496?utm_source=chatgpt.com
[6]  Marturi, N., Dembélé, S. and Piat, N. (2014) Scanning Electron Microscope Image Signal‐to‐Noise Ratio Monitoring for Micro‐Nanomanipulation. Scanning, 36, 419-429. https://doi.org/10.1002/sca.21137
[7]  Newberry, M.V. (1991) Signal-to-Noise Considerations for Sky-Subtracted CCD Data. Pub-lications of the Astronomical Society of the Pacific, 103, Article 122. https://doi.org/10.1086/132801
[8]  Ranjan, R., Costa, G., Ferrara, M.A., Sansone, M. and Sirleto, L. (2022) Noises Investigations and Image Denoising in Femtosecond Stimulated Raman Scattering Microscopy. Journal of Biophotonics, 15, e202100379. https://doi.org/10.1002/jbio.202100379
[9]  Zhang, Y., Zhu, Y., Nichols, E., Wang, Q., Zhang, S., Smith, C., et al. (2019) A Pois-son-Gaussian Denoising Dataset with Real Fluorescence Microscopy Images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, 15-20 June 2019, 11702-11710. https://doi.org/10.1109/cvpr.2019.01198
[10]  Teng, Y., Sheng, S. and Zheng, Y. (2022) Nonlinear Gaussian Filter with Multi-Step Colored Noise. Ac-tuators, 11, Article 103. https://doi.org/10.3390/act11040103
[11]  Kusrini, K., Arif Yudianto, M.R. and Al Fatta, H. (2022) The Effect of Gaussian Filter and Data Preprocessing on the Classification of Punakawan Puppet Images with the Convolutional Neural Network Algorithm. International Journal of Electrical and Computer Engineering (IJECE), 12, Article 3752. https://doi.org/10.11591/ijece.v12i4.pp3752-3761
[12]  Smith, C.S., Slotman, J.A., Schermelleh, L., et al. (2021) Structured Illumination Microscopy with Noise-Controlled Image Reconstructions. Nature Methods, 18, 821-828.
[13]  Leslie, T., Mikhail, A., Mayan, I., Anwar, M., Bakhtash, S., Nader, M., et al. (2012) Overdiagnosis and Mistreatment of Malaria among Febrile Pa-tients at Primary Healthcare Level in Afghanistan: Observational Study. BMJ, 345, e4389-e4389. https://doi.org/10.1136/bmj.e4389
[14]  Su, Q., Bi, B., Zhang, P., Shen, L., Huang, X. and Xin, Q. (2022) GPR Image Clutter Suppres-sion Using Gaussian Curvature Decomposition in the PCA Domain. Remote Sensing, 14, Article 4879. https://doi.org/10.3390/rs14194879
[15]  Mahakale, S.R. and Thakur, N.V. (2013) A Comparative Study of Image Filtering on Various Noisy Pixels. Inter-national Journal of Image Processing and Vision Science, 1, 157-165.
[16]  Zhou, R., El Helou, M., Sage, D., et al. (2020) W2S: Microscopy Data with Joint Denoising and Super-Resolution for Widefield to SIM Mapping. https://arxiv.org/abs/2003.05961?utm_source=chatgpt.com 
[17]  Maqsood, A., Farid, M.S., Khan, M.H. and Grzegorzek, M. (2021) Deep Malaria Parasite Detection in Thin Blood Smear Microscopic Images. Applied Sciences, 11, Article 2284. https://doi.org/10.3390/app11052284
[18]  Anggraini, D., Nugroho, A.S., Pratama, C., Rozi, I.E., Aulia Arif Iskandar, and Reggio Nurtanio Hartono, (2011) Automated Status Identification of Microscopic Images Obtained from Malaria Thin Blood Smears. Proceedings of the 2011 International Conference on Electrical Engineering and Informatics, Bandung, 17-19 July 2011, 1-6. https://doi.org/10.1109/iceei.2011.6021762
[19]  Uzun Ozsahin, D., Mus-tapha, M.T., Bartholomew Duwa, B. and Ozsahin, I. (2022) Evaluating the Per-formance of Deep Learning Frameworks for Malaria Parasite Detection Using Microscopic Images of Peripheral Blood Smears. Diagnostics, 12, Article 2702. https://doi.org/10.3390/diagnostics12112702
[20]  Dutta, A.K., Mageswari, R.U., Gayathri, A., Dallfin Bruxella, J.M., Ishak, M.K., Mostafa, S.M., et al. (2022) Barnacles Mating Optimizer with Deep Transfer Learning Enabled Biomedical Malaria Parasite Detection and Classification. Computational Intelligence and Neuroscience, 2022, 1-12. https://doi.org/10.1155/2022/7776319
[21]  Alharbi, A.H., Aravinda, C.V., Shetty, J., Jabarulla, M.Y., Sudeepa, K.B. and Singh, S.K. (2022) Computational Models‐Based Detection of Peripheral Malarial Parasites in Blood Smears. Con-trast Media & Molecular Imaging, 2022, 1-9. https://doi.org/10.1155/2022/9171343
[22]  Yang, F., Poostchi, M., Yu, H., Zhou, Z., Silamut, K., Yu, J., et al. (2020) Deep Learning for Smartphone-Based Malaria Parasite Detection in Thick Blood Smears. IEEE Journal of Biomedical and Health Informatics, 24, 1427-1438. https://doi.org/10.1109/jbhi.2019.2939121
[23]  Putra, R.D., Purboyo, T.W. and Prasasti, A.L. (2017) A Review of Image Enhancement Methods. Interna-tional Journal of Applied Engineering Research, 12, 8.
[24]  Chang, J., Chen, Y., Lo, C. and Chen, H. (2021) An Advanced AFWMF Model for Identifying High Random-Valued Impulse Noise for Image Processing. Applied Sciences, 11, Ar-ticle 7037. https://doi.org/10.3390/app11157037
[25]  Mannam, V., Zhang, Y., Zhu, Y., Nichols, E., Wang, Q., Sundaresan, V., et al. (2022) Real-Time Image Denoising of Mixed Poisson-Gaussian Noise in Fluorescence Microscopy Images Using Imagej. Optica, 9, Article 335. https://doi.org/10.1364/optica.448287
[26]  Kusnik, D. and Smolka, B. (2022) Robust Mean Shift Filter for Mixed Gaussian and Impulsive Noise Re-duction in Color Digital Images. Scientific Reports, 12, Article No. 14951. https://doi.org/10.1038/s41598-022-19161-0
[27]  Meiniel, W., Olivo-Marin, J. and Angelini, E.D. (2018) Denoising of Microscopy Images: A Review of the State-of-the-Art, and a New Sparsity-Based Method. IEEE Transactions on Im-age Processing, 27, 3842-3856. https://doi.org/10.1109/tip.2018.2819821
[28]  Nnamoko, N.A., Arshad, F.N., England, D., Vora, J. and Norman, J. (2014) Evaluation of Filter and Wrapper Methods for Feature Selection in Supervised Machine Learning. 6. PGNET Pro-ceedings of the 15th Annual Postgraduate Symposium on the Convergence of Telecommunications, Networking and Broadcasting 2014, Liverpool, 23-24 June 2014, 1-6.
[29]  Smolka, B. and Chydzinski, A. (2005) Fast Detection and Im-pulsive Noise Removal in Color Images. Real-Time Imaging, 11, 389-402. https://doi.org/10.1016/j.rti.2005.07.003
[30]  Huang, J. and Dragotti, P.L. (2022) WINNet: Wavelet-Inspired Invertible Network for Image Denoising. IEEE Transactions on Image Processing, 31, 4377-4392. https://doi.org/10.1109/tip.2022.3184845
[31]  Haider, S.A., Cameron, A., Siva, P., Lui, D., Shafiee, M.J., Boroomand, A., et al. (2016) Fluorescence Mi-croscopy Image Noise Reduction Using a Stochastically-Connected Random Field Model. Scientific Reports, 6, Article No. 20640. https://doi.org/10.1038/srep20640
[32]  Thakur, R.S., Chatterjee, S., Yadav, R.N. and Gupta, L. (2021) Image De-Noising with Machine Learning: A Review. IEEE Access, 9, 93338-93363. https://doi.org/10.1109/access.2021.3092425
[33]  Bahnemiri, S.G., Ponomarenko, M. and Egiazarian, K. (2022) Learning-Based Noise Component Map Estimation for Image Denoising. IEEE Signal Processing Letters, 29, 1407-1411. https://doi.org/10.1109/lsp.2022.3169706
[34]  Mohan, S., Manzorro, R., Vincent, J.L., Tang, B., Sheth, D.Y., Simoncelli, E.P., et al. (2022) Deep Denoising for Scientific Discovery: A Case Study in Electron Microscopy. IEEE Transactions on Computational Imaging, 8, 585-597. https://doi.org/10.1109/tci.2022.3176536
[35]  Guney, G., Uluc, N., Demirkiran, A., Aytac-Kipergil, E., Unlu, M.B. and Birgul, O. (2019) Comparison of Noise Reduction Methods in Photoacoustic Microscopy. Computers in Biology and Medicine, 109, 333-341. https://doi.org/10.1016/j.compbiomed.2019.04.035
[36]  Bharati, S., Khan, T.Z., Podder, P. and Hung, N.Q. (2020) A Comparative Analysis of Image De-noising Problem: Noise Models, Denoising Filters and Applications. In: Hassani-en, A.E., Khamparia, A., Gupta, D., Shankar, K. and Slowik, A. Eds., Studies in Systems, Decision and Control, Springer International Publishing, 49-66. https://doi.org/10.1007/978-3-030-55833-8_3
[37]  Zin, T., Seta, S., Nakaha-ra, Y., Yamaguchi, T. and Ikehara, M. (2022) Local Image Denoising Using RAISR. IEEE Access, 10, 22420-22428. https://doi.org/10.1109/access.2022.3152219
[38]  Ren, L., Heidari, A.A., Cai, Z.-N., et al. (2022) Gaussian Kernel Probability-Driven Slime Mould Algorithm with New Movement Mechanism for Multi-Level Image Segmentation. Meas-urement, 192, Article 110884.
[39]  Shah, Z.H., Müller, M., Wang, T., Scheidig, P.M., Schneider, A., Schüttpelz, M., et al. (2021) Deep-Learning Based De-noising and Reconstruction of Super-Resolution Structured Illumination Mi-croscopy Images. Photonics Research, 9, B168. https://doi.org/10.1364/prj.416437
[40]  Pawar, P., Ainapure, B., Rashid, M., Ahmad, N., Alotaibi, A. and Alshamrani, S.S. (2022) Deep Learning Approach for the Detection of Noise Type in Ancient Images. Sustainability, 14, Article 11786. https://doi.org/10.3390/su141811786
[41]  Zhang, K., et al. (2022) Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis. http://arxiv.org/abs/2203.13278
[42]  Abdelhamed, A., Timofte, R., Brown, M.S., et al. (2019) NTIRE 2019 Challenge on Real Image Denoising: Methods and Results. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Long Beach, 16-17 June 2019, 2197-2210.
[43]  Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollar, P. (2017) Focal Loss for Dense Object Detection. Proceedings of the IEEE International Conference on Computer Vision (ICCV), Venice, 22-29 October 2017, 2980-2988.
[44]  Ren, X., Zhang, W., Wu, M., Li, C. and Wang, X. (2022) Me-ta-Yolo: Meta-Learning for Few-Shot Traffic Sign Detection via Decoupling De-pendencies. Applied Sciences, 12, Article 5543. https://doi.org/10.3390/app12115543
[45]  Tambwekar, A., Agrawal, K., Majee, A. and Subramanian, A. (2021) Few-Shot Batch Incremental Road Ob-ject Detection via Detector Fusion. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, 11-17 October 2021, 3063-3070. https://doi.org/10.1109/iccvw54120.2021.00341
[46]  Delpretti, S., Luisier, F., Ramani, S., Blu, T. and Unser, M. (2008) Multiframe Sure-let De-noising of Timelapse Fluorescence Microscopy Images. 2008 5th IEEE Interna-tional Symposium on Biomedical Imaging: From Nano to Macro, Paris, 14-17 May 2008, 149-152. https://doi.org/10.1109/isbi.2008.4540954
[47]  Zhang, Q., Xiao, J., Tian, C., Lin, C. and Zhang, S. (2022) A Robust Deformed Convolu-tional Neural Network (CNN) for Image Denoising. CAAI Transactions on Intel-ligence Technology, 8, 331-342. https://doi.org/10.1049/cit2.12110
[48]  Nair, P., Ward, T.A., Viyapuri, R. and Johan, M.R. (2015) Experimental Analysis of Artificial Dragonfly Wings Using Black Graphite and Fiberglass for Use in Biomimetic Micro Air Vehicles (BMAVs). MATEC Web of Conferences, 30, Article 03001. https://doi.org/10.1051/matecconf/20153003001
[49]  Davis, P.K. (2013) Using Behavioral Indicators to Help Detect Potential Violent Acts: A Review of The Science Base. RAND.
[50]  Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L. and Liu, Y. (2022) Countering Malicious Deepfakes: Survey, Battleground, and Horizon. International Journal of Computer Vision, 130, 1678-1734. https://doi.org/10.1007/s11263-022-01606-8
[51]  Paul, P., Duessmann, H., Bernas, T., Huber, H. and Kalamatianos, D. (2010) Automatic Noise Quantifica-tion for Confocal Fluorescence Microscopy Images. Computerized Medical Im-aging and Graphics, 34, 426-434. https://doi.org/10.1016/j.compmedimag.2010.04.001
[52]  Breslauer, D.N., Maamari, R.N., Switz, N.A., Lam, W.A. and Fletcher, D.A. (2009) Mobile Phone Based Clinical Microscopy for Global Health Applications. PLOS ONE, 4, e6320. https://doi.org/10.1371/journal.pone.0006320
[53]  Nakasi, R., Mwebaze, E., Zawedde, A., Tusubira, J., Akera, B. and Maiga, G. (2020) A New Approach for Microscopic Diagnosis of Malaria Parasites in Thick Blood Smears Using Pre-Trained Deep Learning Models. SN Applied Sciences, 2, Article No. 1255. https://doi.org/10.1007/s42452-020-3000-0
[54]  Tania, S. and Rowaida, R. (2016) A Comparative Study of Various Image Filtering Techniques for Remov-ing Various Noisy Pixels in Aerial Image. International Journal of Signal Pro-cessing, Image Processing and Pattern Recognition, 9, 113-124. https://doi.org/10.14257/ijsip.2016.9.3.10
[55]  Ren, S., He, K., Girshick, R. and Sun, J. (2016) Faster R-CNN: Towards Real-Time Object Detection with Re-gion Proposal Networks. http://arxiv.org/abs/1506.01497
[56]  Duncan, J.S. and Ayache, N. (2000) Medical Image Analysis: Progress over Two Decades and the Challenges Ahead. IEEE Transactions on Pattern Analysis and Machine In-telligence, 22, 85-106. https://doi.org/10.1109/34.824822
[57]  Woelk, L., Kannabiran, S.A., Brock, V.J., Gee, C.E., Lohr, C., Guse, A.H., et al. (2021) Time-Dependent Image Restoration of Low-Snr Live-Cell Ca2 Fluorescence Mi-croscopy Data. International Journal of Molecular Sciences, 22, Article 11792. https://doi.org/10.3390/ijms222111792
[58]  Singh, P. and Shree, R. (2016) A Comparative Study to Noise Models and Image Restoration Techniques. In-ternational Journal of Computer Applications, 149, 18-27. https://doi.org/10.5120/ijca2016911336
[59]  Tajmirriahi, M., Kafieh, R., Amini, Z. and Rabbani, H. (2021) A Lightweight Mimic Convolutional Au-to-Encoder for Denoising Retinal Optical Coherence Tomography Images. IEEE Transactions on Instrumentation and Measurement, 70, 1-8. https://doi.org/10.1109/tim.2021.3072109
[60]  Jo, Y., Chun, S.Y. and Choi, J. (2021) Rethinking Deep Image Prior for Denoising. 2021 IEEE/CVF Interna-tional Conference on Computer Vision (ICCV), Montreal, 10-17 October 2021, 5067-5076. https://doi.org/10.1109/iccv48922.2021.00504

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133