全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Two-Sample Mendelian Randomization Analysis of the Causal Relationship between Intestinal Flora and Childhood Obesity

DOI: 10.4236/oalib.1112342, PP. 1-13

Subject Areas: Public Health, Pediatrics, Microbiology, Bioinformatics

Keywords: Childhood Obesity, Intestinal Flora, Mendelian Randomization, Causality

Full-Text   Cite this paper   Add to My Lib

Abstract

Objective: To evaluate the potential causal relationship between 182 gut microbiota and childhood obesity by two-sample Mendelian randomization. Methods: The data source was the summary data of genome-wide association study (GWAS), and 182 intestinal microbiota contained 874 single nucleotide diversity (SNPs). The childhood obesity data contained 2,442,739 SNPs. Mendelian randomization analysis was performed using three methods: inverse variance weighting (IVW), weighted median, and MR Egger regression. Subsequently, heterogeneity test, horizontal pleiotropy test, MR PRESSO method and leave one out analysis were used to detect outliers. Outcome: IVW analysis showed that class Erysipelotrichia (OR = 0.530, 95% CI: 0.293 - 0.958, P = 0.035), family Verrucomicrobiaceae (OR = 0.475, 95% CI: 0.311 - 0.726, P = 0.001), and genus Akkermansia (OR = 0.476, 95% CI: 0.311 - 0.726, P = 0.001) and order Verrucomicrobiales (OR = 0.475, 95% CI: 0.311 - 0.726, P = 0.001) were protective factors for the development of childhood obesity, while genus Ruminiclostridium 9 (OR = 2.051, 95% CI: 1.069 - 3.932, P = 0.031) was potential risk factor for childhood obesity. Conclusion: Genus Ruminiclostridium 9 is positively correlated with childhood obesity, while class Erysipelotrichia, family Verrucomicrobiaceae, genus Akkermansia, and order Verrucomicrobiales are negatively correlated.

Cite this paper

Xu, D. and Wang, H. (2024). Two-Sample Mendelian Randomization Analysis of the Causal Relationship between Intestinal Flora and Childhood Obesity. Open Access Library Journal, 11, e2342. doi: http://dx.doi.org/10.4236/oalib.1112342.

References

[1]  Contreras, R.E., Schriever, S.C. and Pfluger, P.T. (2019) Physiological and Epigenetic Features of Yoyo Dieting and Weight Control. Frontiers in Genetics, 10, Article 1015. https://doi.org/10.3389/fgene.2019.01015
[2]  World Obesity Federation (2023) World Obesity Atlas 2023. https://www.worldobesity.org/resources/resource-library/world-obesity-atlas-2023
[3]  Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010) A Human Gut Microbial Gene Catalogue Established by Meta-genomic Sequencing. Nature, 464, 59-65. https://doi.org/10.1038/nature08821
[4]  Adak, A. and Khan, M.R. (2018) An Insight into Gut Microbiota and Its Functionalities. Cellular and Molecular Life Sciences, 76, 473-493. https://doi.org/10.1007/s00018-018-2943-4
[5]  Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., et al. (2004) The Gut Microbiota as an Environmental Factor That Regulates Fat Storage. Proceedings of the National Academy of Sciences of the United States of America, 101, 15718-15723. https://doi.org/10.1073/pnas.0407076101
[6]  Heiss, C.N. and Olofsson, L.E. (2017) Gut Microbiota-Dependent Modulation of Energy Metabolism. Journal of Innate Immunity, 10, 163-171. https://doi.org/10.1159/000481519
[7]  Kurilshikov, A., Medina-Gomez, C., Bacigalupe, R., Radjabzadeh, D., Wang, J., Demirkan, A., et al. (2021) Large-Scale Association Analyses Identify Host Factors Influencing Human Gut Micro-biome Composition. Nature Genetics, 53, 156-165. https://doi.org/10.1038/s41588-020-00763-1
[8]  Bradfield, J.P., Taal, H.R., et al. (2012) A Genome-Wide Association Meta-Analysis Identifies New Childhood Obesity Loci. Nature Genetics, 44, 526-531. https://doi.org/10.1038/ng.2247
[9]  Lawlor, D.A. (2016) Commentary: Two-Sample Mendelian Random-ization: Opportunities and Challenges. International Journal of Epidemiology, 45, 908-915. https://doi.org/10.1093/ije/dyw127
[10]  Skrivankova, V.W., Richmond, R.C., Woolf, B.A.R., Yarmolinsky, J., Davies, N.M., Swanson, S.A., et al. (2021) Strengthening the Reporting of Observational Studies in Epidemiology Using Mendelian Ran-domization. JAMA, 326, 1614-1621. https://doi.org/10.1001/jama.2021.18236
[11]  Sanna, S., van Zuydam, N.R., Mahajan, A., Kurilshikov, A., Vich Vila, A., Võsa, U., et al. (2019) Causal Relationships among the Gut Microbiome, Short-Chain Fatty Acids and Metabolic Diseases. Nature Genetics, 51, 600-605. https://doi.org/10.1038/s41588-019-0350-x
[12]  Burgess, S. and Thompson, S.G. (2011) Avoiding Bias from Weak In-struments in Mendelian Randomization Studies. International Journal of Epidemiology, 40, 755-764. https://doi.org/10.1093/ije/dyr036
[13]  Yavorska, O.O. and Burgess, S. (2017) Mendelianrandomization: An R Package for Performing Mendelian Randomization Analyses Using Summarized Data. International Journal of Epidemiology, 46, 1734-1739. https://doi.org/10.1093/ije/dyx034
[14]  Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. https://doi.org/10.1002/gepi.21758
[15]  Bowden, J., Davey Smith, G., Haycock, P.C. and Burgess, S. (2016) Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator. Genetic Epide-miology, 40, 304-314. https://doi.org/10.1002/gepi.21965
[16]  Curtis, S.W., Cobb, D.O., Kilaru, V., Terrell, M.L., Marder, M.E., Barr, D.B., et al. (2019) Environmental Exposure to Polybrominated Biphenyl (PBB) Associates with an Increased Rate of Biological Aging. Aging, 11, 5498-5517. https://doi.org/10.18632/aging.102134
[17]  Teng, D., Jia, W., Wang, W., Liao, L., Xu, B., Gong, L., et al. (2024) Causality of the Gut Microbiome and Atherosclerosis-Related Lipids: A Bidirectional Mende-lian Randomization Study. BMC Cardiovascular Disorders, 24, Article No. 138. https://doi.org/10.1186/s12872-024-03804-3
[18]  Xie, T., Chen, X., Liu, C., Cai, X., Xiang, M., Liu, S., et al. (2022) New Insight into the Role of Lipid Metabolism-Related Proteins in Rheumatic Heart Valve Disease. Lipids in Health and Disease, 21, Article No. 110. https://doi.org/10.1186/s12944-022-01722-x
[19]  Everard, A., Belzer, C., Geurts, L., Ouwerkerk, J.P., Druart, C., Bindels, L.B., et al. (2013) Cross-Talk between Akkermansia muciniphila and Intestinal Epithelium Controls Di-et-Induced Obesity. Proceedings of the National Academy of Sciences of the United States of America, 110, 9066-9071. https://doi.org/10.1073/pnas.1219451110
[20]  Schneeberger, M., Everard, A., Gómez-Valadés, A.G., Matamoros, S., Ramírez, S., Delzenne, N.M., et al. (2015) Akkermansia muciniphila Inversely Correlates with the Onset of Inflammation, Al-tered Adipose Tissue Metabolism and Metabolic Disorders during Obesity in Mice. Scientific Reports, 5, Article No. 16643. https://doi.org/10.1038/srep16643
[21]  Yassour, M., Lim, M.Y., Yun, H.S., Tickle, T.L., Sung, J., Song, Y., et al. (2016) Sub-clinical Detection of Gut Microbial Biomarkers of Obesity and Type 2 Diabetes. Genome Medicine, 8, Article No. 17. https://doi.org/10.1186/s13073-016-0271-6
[22]  Dao, M.C., Everard, A., Aron-Wisnewsky, J., Sokolovska, N., Prifti, E., Verger, E.O., et al. (2015) Akkermansia muciniphilaand Improved Metabolic Health during a Dietary Intervention in Obesity: Relationship with Gut Microbiome Richness and Ecology. Gut, 65, 426-436. https://doi.org/10.1136/gutjnl-2014-308778
[23]  Thaiss, C.A., Itav, S., Rothschild, D., Meijer, M.T., Levy, M., Moresi, C., et al. (2016) Persistent Microbiome Alterations Modulate the Rate of Post-Dieting Weight Regain. Nature, 540, 544-551. https://doi.org/10.1038/nature20796

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133