全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

A Study on State Constraint Optimal Control Problems

DOI: 10.4236/oalib.1112066, PP. 1-9

Subject Areas: Mathematics

Keywords: State Constraint Optimal Control, Partial Differential Equations, Extremal Flow, Differential-Algebraic Equation

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we use partial differential equations to deal with constraint optimal control problems. We construct extremal flows by differential-algebraic equation to approximate the optimal objective value of constraint optimal control problems. We prove a convergent theorem for an approximation approach to the optimal objective value of a state-constraint optimal control problem. 

Cite this paper

Zhu, J. (2024). A Study on State Constraint Optimal Control Problems. Open Access Library Journal, 11, e2066. doi: http://dx.doi.org/10.4236/oalib.1112066.

References

[1]  Pontryagin, L.S. (1964) The Mathematical Theory of Optimal Processes. Pergamon Press.
[2]  Sontag, E.D. (1998) Math-ematical Control Theory: Deterministic Finite Dimensional Systems. 2nd Edition, Springer.
[3]  Martens, B. and Gerdts, M. (2020) Convergence Analysis for Approximations of Optimal Control Problems Subject to Higher Index Differen-tial-Algebraic Equations and Mixed Control-State Constraints. SIAM Journal on Control and Optimization, 58, 1-33. https://doi.org/10.1137/18m1219382
[4]  Zhu, J. (2017) A Feedback Optimal Control by Hamilton-Jacobi-Bellman Equation. European Journal of Control, 37, 70-74. https://doi.org/10.1016/j.ejcon.2017.05.007
[5]  Zhu, J. (2018) Sin-gular Optimal Control by Minimizer Flows. European Journal of Control, 42, 32-37. https://doi.org/10.1016/j.ejcon.2018.03.001
[6]  Zhu, J. (2021) A Computational Approach to Non-Smooth Optimization by Diffusion Equations. Journal of Computational and Applied Mathematics, 384, Article ID: 113166. https://doi.org/10.1016/j.cam.2020.113166
[7]  Crandall, M.G. and Lions, P. (1983) Viscosity Solutions of Hamil-ton-Jacobi Equations. Transactions of the American Mathematical Society, 277, 1-42. https://doi.org/10.1090/s0002-9947-1983-0690039-8
[8]  Bardi, M. and Capuzzo-Dolcetta, I. (1997) Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser.
[9]  Fleming, W.H. (1969) The Cauchy Problem for a Nonlinear First Order Partial Differential Equation. Journal of Differential Equations, 5, 515-530. https://doi.org/10.1016/0022-0396(69)90091-6
[10]  Zhu, J. (2021) A Computational Approach to Optimal Control Problems Subject to Mixed Control-State Constraints. International Journal of Control, 96, 41-47. https://doi.org/10.1080/00207179.2021.1978556
[11]  Burden, R.L. and Faires, J.D. (1989) Numerical Analysis. 4th Edition, Weder and Schmidt.

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133