全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Oxidation of Acetone by CO2/H2O2 over MgO/γ-Al2O3 Catalyst in Liquid-Phase

DOI: 10.4236/oalib.1112053, PP. 1-15

Subject Areas: Chemical Engineering & Technology

Keywords: Liquid-Phase, Carbon Dioxide, Acetone, Hydrogen Peroxide, Oxidation

Full-Text   Cite this paper   Add to My Lib

Abstract

This article reports the oxidation of acetone by H2O2 in the presence of CO2. It describes the role played by carbon dioxide on the course of the reaction. The reaction was catalyzed by (MgO/γ-Al2O3). The prepared materials were characterized by XRD, FTIR, TGA, TEM, and SEM. Analysis of the reaction products by gas chromatography coupled with mass spectrometry and gas chromatography showed that acetic acid was the main product of the reaction. The improvement in the conversion and selectivity of acetic acid by the use of the oxidizing system (CO2/H2O2) compared to the use of CO2 alone or H2O2 alone is due to the role of the percarbonate entity (HCO4-), formed by the reaction between the carbon dioxide and hydrogen peroxide. Thanks to CO2/H2O2 as a soft oxidizing agent, a conversion of 15.13% and a selectivity in acetic acid of 100% were obtained. This simple, safe, and environmentally friendly method could be an alternative green route for acetic acid production from acetone.

Cite this paper

Hadadi, S. M. , Aouissi, A. , Aldhayan, D. and Alharthi, A. (2024). Oxidation of Acetone by CO2/H2O2 over MgO/γ-Al2O3 Catalyst in Liquid-Phase. Open Access Library Journal, 11, e2053. doi: http://dx.doi.org/10.4236/oalib.1112053.

References

[1]  Duan, C., Liao, H., Wang, K. and Ren, Y. (2023) The Research Hotspots and Trends of Volatile Organic Compound Emissions from Anthropogenic and Natural Sources: A Systematic Quantitative Review. Environmental Research, 216, Article ID: 114386. https://doi.org/10.1016/j.envres.2022.114386
[2]  David, E. and Niculescu, V. (2021) Volatile Organic Com-pounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. International Journal of En-vironmental Research and Public Health, 18, Article 13147. https://doi.org/10.3390/ijerph182413147
[3]  Nair, A.T., Senthilnathan, J. and Nagendra, S.M.S. (2019) Emerging Perspectives on VOC Emissions from Landfill Sites: Impact on Tropospheric Chemistry and Local Air Quality. Process Safety and Environmental Protection, 121, 143-154. https://doi.org/10.1016/j.psep.2018.10.026
[4]  Ubando, A.T., Africa, A.D.M., Maniquiz-Redillas, M.C., Culaba, A.B. and Chen, W. (2021) Reduction of Particulate Matter and Volatile Organic Compounds in Biorefineries: A State-Of-The-Art Re-view. Journal of Hazardous Materials, 403, Article ID: 123955. https://doi.org/10.1016/j.jhazmat.2020.123955
[5]  Carpenter, P.C., Ciccioli, P., Goldstein, A., Hamilton, J.F., Hoffmann, T., Lewis, A. C., Williams, J., et al. (2007) Volatile Organic Compounds in the Atmosphere. Blackwell.
[6]  Kamal, M.S., Raz-zak, S.A. and Hossain, M.M. (2016) Catalytic Oxidation of Volatile Organic Compounds (VOCs)—A Review. Atmospheric En-vironment, 140, 117-134. https://doi.org/10.1016/j.atmosenv.2016.05.031
[7]  Arı, A., Ertürk Arı, P., Yenisoy-Karakaş, S. and Gaga, E.O. (2020) Source Characterization and Risk Assessment of Occupational Exposure to Volatile Organic Com-pounds (VOCs) in a Barbecue Restaurant. Building and Environment, 174, Article ID: 106791. https://doi.org/10.1016/j.buildenv.2020.106791
[8]  Mu, X., Ding, H., Pan, W., Zhou, Q., Du, W., Qiu, K., et al. (2021) Research Progress in Catalytic Oxidation of Volatile Organic Compound Acetone. Journal of Environmental Chemical Engi-neering, 9, Article ID: 105650. https://doi.org/10.1016/j.jece.2021.105650
[9]  He, X., Che, X., Gao, S., Chen, X., Pan, M., Jiang, M., et al. (2022) Volatile Organic Compounds Emission Inventory of Organic Chemical Raw Material Industry. At-mospheric Pollution Research, 13, Article ID: 101276. https://doi.org/10.1016/j.apr.2021.101276
[10]  Zheng, Y., Zhao, Q., Shan, C., Lu, S., Su, Y., Han, R., et al. (2020) Enhanced Acetone Oxidation over the CeO2/Co3O4 Catalyst Derived from Metal-Organic Frameworks. ACS Applied Materials & Interfaces, 12, 28139-28147. https://doi.org/10.1021/acsami.0c04904
[11]  Morales-Torres, S., Carrasco-Marín, F., Pérez-Cadenas, A. and Maldona-do-Hódar, F. (2015) Coupling Noble Metals and Carbon Supports in the Development of Combustion Catalysts for the Abatement of BTX Compounds in Air Streams. Catalysts, 5, 774-799. https://doi.org/10.3390/catal5020774
[12]  Guo, Y., Wen, M., Li, G. and An, T. (2021) Recent Advances in VOC Elimination by Catalytic Oxidation Technology onto Various Na-noparticles Catalysts: A Critical Review. Applied Catalysis B: Environmental, 281, Article ID: 119447. https://doi.org/10.1016/j.apcatb.2020.119447
[13]  Ray, C. and Pal, T. (2017) Retracted Article: Recent Advances of Metal-Metal Oxide Nanocomposites and Their Tailored Nanostructures in Numerous Catalytic Applications. Journal of Mate-rials Chemistry A, 5, 9465-9487. https://doi.org/10.1039/c7ta02116j
[14]  Gong, J. (2011) Structure and Surface Chem-istry of Gold-Based Model Catalysts. Chemical Reviews, 112, 2987-3054. https://doi.org/10.1021/cr200041p
[15]  Ding, C., Dong, F. and Tang, Z. (2020) Research Progress on Catalysts for the Electrocatalytic Oxidation of Methanol. Chemis-trySelect, 5, 13318-13340. https://doi.org/10.1002/slct.202003365
[16]  Jia, H., Xing, Y., Zhang, L., Zhang, W., Wang, J., Zhang, H., et al. (2023) Progress of Catalytic Oxidation of Typical Chlorined Volatile Organic Compounds (CVOCs): A Review. Science of the Total Environment, 865, Article ID: 161063. https://doi.org/10.1016/j.scitotenv.2022.161063
[17]  Yusuf, A., Snape, C., He, J., Xu, H., Liu, C., et al. (2017) Advances on Transition Metal Oxides Catalysts for Formaldehyde Oxidation: A Review. Catalysis Reviews, 59, 189-233. https://doi.org/10.1016/j.apcatb.2020.119447
[18]  Tang, W., Liu, G., Li, D., Liu, H., Wu, X., Han, N., et al. (2015) Design and Synthesis of Porous Non-Noble Metal Oxides for Catalytic Removal of VOCs. Science China Chemistry, 58, 1359-1366. https://doi.org/10.1007/s11426-015-5469-8
[19]  Azalim, S., Franco, M., Brahmi, R., Giraudon, J. and Lamonier, J. (2011) Removal of Oxygenated Volatile Organic Compounds by Catalytic Oxidation over Zr-Ce-Mn Catalysts. Journal of Hazardous Materials, 188, 422-427. https://doi.org/10.1016/j.jhazmat.2011.01.135
[20]  Solsona, B., Garcia, T., Aylón, E., Dejoz, A.M., Vázquez, I., Agouram, S., et al. (2011) Promoting the Activity and Selectivity of High Surface Area Ni-Ce-O Mixed Oxides by Gold Deposition for VOC Catalytic Combustion. Chemical Engineering Journal, 175, 271-278. https://doi.org/10.1016/j.cej.2011.09.104
[21]  Chen, X., Carabineiro, S.A.C., Bastos, S.S.T., Tavares, P.B., Órfão, J.J.M., Pereira, M.F.R., et al. (2013) Exotemplated Copper, Cobalt, Iron, Lanthanum and Nickel Oxides for Catalytic Oxidation of Ethyl Acetate. Journal of Environmental Chemical Engineering, 1, 795-804. https://doi.org/10.1016/j.jece.2013.07.019
[22]  Ziaei-Azad, H., Khodadadi, A., Esmaeilnejad-Ahranjani, P. and Mortaza-vi, Y. (2011) Effects of Pd on Enhancement of Oxidation Activity of LaBO3 (B= Mn, Fe, Co and Ni) Pervoskite Catalysts for Pollution Abatement from Natural Gas Fueled Vehicles. Applied Catalysis B: Environmental, 102, 62-70. https://doi.org/10.1016/j.apcatb.2010.11.025
[23]  Hussain, I., Tanimu, G., Ahmed, S., Aniz, C.U., Alasiri, H. and Al-hooshani, K. (2023) A Review of the Indispensable Role of Oxygen Vacancies for Enhanced CO2 Methanation Activity over CeO2-Based Catalysts: Uncovering, Influencing, and Tuning Strategies. International Journal of Hydrogen Energy, 48, 24663-24696. https://doi.org/10.1016/j.ijhydene.2022.08.086
[24]  Islam, A., Taufiq-Yap, Y.H., Chan, E., Moniruzzaman, M., Islam, S. and Nabi, M.N. (2014) Advances in Solid-Catalytic and Non-Catalytic Technologies for Biodiesel Production. Energy Conversion and Management, 88, 1200-1218. https://doi.org/10.1016/j.enconman.2014.04.037
[25]  Zhao, Z., Ma, S., Gao, B., Bi, F., Qiao, R., Yang, Y., et al. (2023) A Systematic Review of Intermediates and Their Characterization Methods in VOCs Degradation by Different Catalytic Technologies. Separation and Purification Technology, 314, Article ID: 123510. https://doi.org/10.1016/j.seppur.2023.123510
[26]  Guo, Z., Liu, B., Zhang, Q., Deng, W., Wang, Y. and Yang, Y. (2014) Recent Advances in Heterogeneous Selective Oxidation Catalysis for Sustainable Chemistry. Chemical Society Re-views, 43, 3480-3524.
[27]  Zhao, R., Wang, H., Zhao, D., Liu, R., Liu, S., Fu, J., et al. (2022) Review on Catalytic Oxidation of VOCs at Ambient Temperature. International Journal of Molecular Sciences, 23, Article 13739. https://doi.org/10.3390/ijms232213739
[28]  Bratan, V., Vasile, A., Chesler, P. and Hornoiu, C. (2022) Insights into the Redox and Structural Properties of CoOx and MnOx: Fundamental Factors Affecting the Catalytic Performance in the Oxida-tion Process of VOCs. Catalysts, 12, Article 1134. https://doi.org/10.3390/catal12101134
[29]  Chu, S., Wang, E., Feng, F., Zhang, C., Jiang, J., Zhang, Q., et al. (2022) A Review of Noble Metal Catalysts for Catalytic Removal of VOCs. Catalysts, 12, Article 1543. https://doi.org/10.3390/catal12121543
[30]  Chmielarz, L., Jabłońska, M., Strumiński, A., Piwowarska, Z., Węgrzyn, A., Witkowski, S., et al. (2013) Selective Catalytic Oxidation of Ammonia to Nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al Mixed Metal Oxides Doped with Noble Metals. Applied Catalysis B: Environmental, 130, 152-162. https://doi.org/10.1016/j.apcatb.2012.11.004
[31]  Ferrandon, M., Ferrand, B., Björnbom, E., Klingstedt, F., Neyestanaki, A.K., Karhu, H., et al. (2001) Copper Oxide-Platinum/Alumina Catalysts for Volatile Organic Compound and Carbon Mon-oxide Oxidation: Synergetic Effect of Cerium and Lanthanum. Journal of Catalysis, 202, 354-366. https://doi.org/10.1006/jcat.2001.3303
[32]  Dai, Y., Li, K., Zhao, J., Ren, J. and Quan, Y. (2024) Catalytic Combustion of Toluene over Cerium Modified CuMn/Al2O3/cordierite Monolithic Catalyst. Journal of Fuel Chemistry and Technology, 52, 55-64. https://doi.org/10.1016/s1872-5813(23)60381-0
[33]  Ganesh, I. (2013) A Review on Magnesium Aluminate (MgAl2O4) Spinel: Synthesis, Processing and Applications. International Materials Reviews, 58, 63-112. https://doi.org/10.1179/1743280412y.0000000001
[34]  Braga, A.H., de Oliveira, D.C., Taschin, A.R., Santos, J.B.O., Gal-lo, J.M.R. and C. Bueno, J.M. (2021) Steam Reforming of Ethanol Using Ni-Co Catalysts Supported on MgAl2O4: Structural Study and Catalytic Properties at Different Temperatures. ACS Catalysis, 11, 2047-2061. https://doi.org/10.1021/acscatal.0c03351
[35]  Prasad, R. and Singh, P. (2012) A Review on CO Oxidation over Copper Chromite Catalyst. Catalysis Reviews, 54, 224-279. https://doi.org/10.1080/01614940.2012.648494
[36]  Gaálová, J. and Topka, P. (2021) Gold and Ceria as Catalysts for VOC Abatement: A Review. Catalysts, 11, Article 789. https://doi.org/10.3390/catal11070789
[37]  Jiang, B., Ning, H., Xie, K., Wang, Z. and Zuo, S. (2024) Sulfur-Tolerant Mechanism in Catalytic Combustion of Toluene over Co/5Mg-γ-Al2O3 Catalyst: Dual Functions of MgO. Applied Catalysis A: General, 670, Article ID: 119554. https://doi.org/10.1016/j.apcata.2023.119554
[38]  He, X., Dong, F., Han, W., Tang, Z. and Ding, Y. (2024) Recent Advances and Future Challenges in the Catalytic Combustion of Light Hydrocarbon VOCs. Jour-nal of Materials Chemistry A, 12, 7470-7507. https://doi.org/10.1039/d3ta07590g
[39]  Liu, R., Wu, H., Shi, J., Xu, X., Zhao, D., Ng, Y.H., et al. (2022) Recent Progress on Catalysts for Catalytic Oxidation of Volatile Organic Compounds: A Re-view. Catalysis Science & Technology, 12, 6945-6991. https://doi.org/10.1039/d2cy01181f
[40]  Castaño, M.H., Molina, R. and Moreno, S. (2015) Catalytic Oxidation of VOCs on MnMgAlOx Mixed Oxides Obtained by Auto-Combustion. Journal of Molecular Catalysis A: Chemical, 398, 358-367. https://doi.org/10.1016/j.molcata.2015.01.001
[41]  Castaño, M.H., Mo-lina, R. and Moreno, S. (2017) Effect of Mg and Al on Manganese Oxides as Catalysts for VOC Oxidation. Molecular Catalysis, 443, 117-124. https://doi.org/10.1016/j.mcat.2017.09.015
[42]  El Assal, Z. (2018) Synthesis and Characterization of Catalysts for the Total Oxidation of Chlorinated Volatile Organic Compounds.
[43]  Ansari, M.B., Min, B., Mo, Y. and Park, S. (2011) CO2 Activation and Promotional Effect in the Oxidation of Cyclic Olefins over Mesoporous Carbon Nitrides. Green Chemistry, 13, Article 1416. https://doi.org/10.1039/c0gc00951b
[44]  Ottenbacher, R.V., Talsi, E.P. and Bryliakov, K.P. (2020) Recent Progress in Catalytic Oxygenation of Aromatic C-H Groups with the Environmentally Benign Oxidants H2O2 and O2. Applied Organometallic Chemistry, 34, e5900. https://doi.org/10.1002/aoc.5900
[45]  Goti, A. and Cardona, F. (n.d.) Hydrogen Peroxide in Green Oxidation Reactions: Recent Catalytic Processes. In: Tundo, P. and Esposito, V., Eds., Green Chemical Reactions, Springer, 191-212. https://doi.org/10.1007/978-1-4020-8457-7_9
[46]  Dumitriu, E., Guimon, C., Cordoneanu, A., Casenave, S., Hulea, T., Chelaru, C., et al. (2001) Heterogeneous Sulfoxidation of Thioethers by Hydro-gen Peroxide over Layered Double Hydroxides as Catalysts. Catalysis Today, 66, 529-534. https://doi.org/10.1016/s0920-5861(00)00627-1
[47]  Heravi, M., Ghalavand, N. and Hashemi, E. (2020) Hydrogen Peroxide as a Green Oxidant for the Selective Catalytic Oxidation of Benzylic and Heterocyclic Alcohols in Different Media: An Overview. Chemistry, 2, 101-178. https://doi.org/10.3390/chemistry2010010
[48]  Yi, Y., Wang, L., Li, G. and Guo, H. (2016) A Review on Research Progress in the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen: No-ble-Metal Catalytic Method, Fuel-Cell Method and Plasma Method. Catalysis Science & Technology, 6, 1593-1610. https://doi.org/10.1039/c5cy01567g
[49]  Miller, K.K., Shancita, I., Bhattacharia, S.K. and Pantoya, M.L. (2021) Surface Modifications of Plasma Treated Aluminum Particles and Direct Evidence for Altered Reactivity. Materials & Design, 210, Article ID: 110119. https://doi.org/10.1016/j.matdes.2021.110119
[50]  Du, L., Li, P., Gao, W., Ding, X., Jiao, W. and Liu, Y. (2021) Enhancement Degradation of Formaldehyde by MgO/γ-Al2O3 Catalyzed O3/H2O2 in a Rotating Packed Bed. Journal of the Taiwan Institute of Chemical Engineers, 118, 29-37. https://doi.org/10.1016/j.jtice.2021.01.011
[51]  Romero C., L., Moreno, M.S., Galetti, A.E. and Barroso, M.N. (2022) Ni-Co Bimetallic Catalysts for Hydrogen Production by Steam Re-forming Ethanol. Topics in Catalysis, 65, 1427-1439. https://doi.org/10.1007/s11244-022-01632-3
[52]  Wang, Z., Liu, Q., Yu, J., Wu, T. and Wang, G. (2003) Surface Structure and Catalytic Behavior of Silica-Supported Copper Catalysts Pre-pared by Impregnation and Sol-Gel Methods. Applied Catalysis A: General, 239, 87-94. https://doi.org/10.1016/s0926-860x(02)00421-0
[53]  Li, Z., Wang, H., Wu, X., Ye, Q., Xu, X., Li, B., et al. (2017) Novel Synthesis and Shape-Dependent Catalytic Performance of Cu-Mn Oxides for CO Oxidation. Applied Surface Science, 403, 335-341. https://doi.org/10.1016/j.apsusc.2017.01.169
[54]  Deshmane, V.G. and Adewuyi, Y.G. (2013) Mesoporous Nanocrystalline Sulfated Zirconia Synthesis and Its Application for FFA Esterification in Oils. Applied Catalysis A: General, 462, 196-206. https://doi.org/10.1016/j.apcata.2013.05.005
[55]  Yang, C. and Wöll, C. (2017) IR Spectroscopy Applied to Metal Oxide Surfaces: Adsorbate Vibrations and Beyond. Advances in Physics: X, 2, 373-408. https://doi.org/10.1080/23746149.2017.1296372
[56]  Warmuz, K. and Madej, D. (2021) Effect of the Particle Size on the Reactivity of MgO-Al2O3 Hydrating Mixtures: A Long-Term Kinetic Investigation of Hydrotalcite Synthesis. Applied Clay Science, 211, Article ID: 106196. https://doi.org/10.1016/j.clay.2021.106196
[57]  Zhang, M., Zhao, L., Xu, H., Wu, W. and Dong, H. (2022) Study on the Thermal Decomposition Mechanism of Mg(NO3)2∙6H2O from the Perspective of Resource Utilization of Magnesium Slag. Environmental Technology, 45, 751-761. https://doi.org/10.1080/09593330.2022.2121182
[58]  Bdewi, S.F., Abdullah, O.G., Aziz, B.K. and Mutar, A.A.R. (2015) Synthesis, Structural and Optical Characterization of MgO Nanocrystalline Embedded in PVA Matrix. Journal of Inorganic and Organometallic Polymers and Materials, 26, 326-334. https://doi.org/10.1007/s10904-015-0321-3
[59]  Noori, A.J. and Kareem, F.A. (2019) The Effect of Magnesium Oxide Nanoparticles on the Antibacterial and Antibiofilm Properties of Glass-Ionomer Cement. Heliyon, 5, e02568. https://doi.org/10.1016/j.heliyon.2019.e02568
[60]  Miceli, M., Frontera, P., Macario, A. and Malara, A. (2021) Recovery/Reuse of Heterogeneous Supported Spent Catalysts. Catalysts, 11, Article 591. https://doi.org/10.3390/catal11050591
[61]  Sheldon, R.A., Wallau, M., Arends, I.W.C.E. and Schuchardt, U. (1998) Het-erogeneous Catalysts for Liquid-Phase Oxidations: Philosophers’ Stones or Trojan Horses? Accounts of Chemical Research, 31, 485-493. https://doi.org/10.1021/ar9700163

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133