全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Estimating the Likelihood of Cancer Occurrence Based on Patient Data and Lifestyle Factors: A Comparison between Logit and Probit Regression

DOI: 10.4236/oalib.1111905, PP. 1-12

Subject Areas: Oncology, Gastroenterology & Hepatology

Keywords: Logit, Probit, and Lung Cancer

Full-Text   Cite this paper   Add to My Lib

Abstract

This study compares logit and probit regression models to analyze the likelihood of lung cancer occurrence based on patient data and lifestyle factors. The results reveal significant associations between lung cancer and patients’ age, gender, smoking status, yellow finger, anxiety, chronic disease, fatigue, allergy, wheezing, alcohol consumption, coughing, shortness of breath, swallowing difficulty, and chest pain. The result shows that the probit model better predicts lung cancer based on the factors observed as its diagnostic performs better than logit. Recommendations based on the findings emphasize the need to create awareness about the significant factors that influence lung cancer. Conclusively, this study contributes to a deeper understanding of the patient’s data and lifestyle factors influencing lung cancer and provides valuable insights.

Cite this paper

Kasali, W. A. , Ogunjoun, B. O. , Olakehinde, A. O. , Oderinde, E. O. and Salam, A. O. (2024). Estimating the Likelihood of Cancer Occurrence Based on Patient Data and Lifestyle Factors: A Comparison between Logit and Probit Regression. Open Access Library Journal, 11, e1905. doi: http://dx.doi.org/10.4236/oalib.1111905.

References

[1]  Osmani, L., Askin, F., Gabrielson, E. and Li, Q.K. (2018) Current WHO Guidelines and the Critical Role of Immunohistochem-ical Markers in the Subclassification of Non-Small Cell Lung Carcinoma (NSCLC): Moving from Targeted Therapy to Immu-notherapy. Seminars in Cancer Biology, 52, 103-109. https://doi.org/10.1016/j.semcancer.2017.11.019
[2]  Goldstraw, P., Chansky, K., Crowley, J., Rami-Porta, R., Asamura, H., Eberhardt, W.E.E., et al. (2016) The IASLC Lung Cancer Staging Project: Proposals for Revision of the TNM Stage Groupings in the Forthcoming (Eighth) Edition of the TNM Classification for Lung Cancer. Journal of Thoracic Oncology, 11, 39-51. https://doi.org/10.1016/j.jtho.2015.09.009
[3]  Alberg, A.J., Brock, M.V., Ford, J.G., Samet, J.M. and Spivack, S.D. (2013) Epidemiology of Lung Cancer. Chest, 143, e1S-e29S. https://doi.org/10.1378/chest.12-2345
[4]  Hamra, G.B., Guha, N., Cohen, A., Laden, F., Raaschou-Nielsen, O., Samet, J.M., et al. (2014) Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis. Envi-ronmental Health Perspectives, 122, 906-911. https://doi.org/10.1289/ehp.1408092
[5]  Hosmer, D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression. Wiley. https://doi.org/10.1002/9781118548387
[6]  Peng, C.J. and So, T.H. (2002) Logistic Regression Analysis and Reporting: A Primer. Understanding Statistics, 1, 31-70. https://doi.org/10.1207/s15328031us0101_04
[7]  Biswas, A. and Nath. A. (2024) Lung Cancer Dataset. Kaggle. https://doi.org/10.34740/KAGGLE/DSV/8795028
[8]  Karabiber, F. (2024) Binary Variable—LearnDataSci. https://www.learndatasci.com/glossary/binary-variable
[9]  Hosmer Jr., D.W., Lemeshow, S. and Sturdivant, R.X. (2013) Applied Logistic Regression. John Wiley and Sons.
[10]  Pesch, B., Kendzia, B., Gustavsson, P., Jöckel, K., Johnen, G., Pohla-beln, H., et al. (2011) Cigarette Smoking and Lung Cancer—Relative Risk Estimates for the Major Histological Types from a Pooled Analysis of Case-Control Studies. International Journal of Cancer, 131, 1210-1219. https://doi.org/10.1002/ijc.27339
[11]  Thun, M.J., Carter, B.D., Feskanich, D., Freedman, N.D., Prentice, R., Lopez, A.D., et al. (2013) 50-Year Trends in Smoking-Related Mortality in the United States. New England Journal of Medicine, 368, 351-364. https://doi.org/10.1056/nejmsa1211127
[12]  Durham, A.L. and Adcock, I.M. (2015) The Relationship between COPD and Lung Cancer. Lung Cancer, 90, 121-127. https://doi.org/10.1016/j.lungcan.2015.08.017
[13]  Bower, J.E., Ganz, P.A., Desmond, K.A., Bernaards, C., Rowland, J.H., Meyerowitz, B.E., et al. (2006) Fatigue in Long‐Term Breast Carci-noma Survivors. Cancer, 106, 751-758. https://doi.org/10.1002/cncr.21671
[14]  Bagnardi, V., Rota, M., Botteri, E., Tra-macere, I., Islami, F., Fedirko, V., et al. (2014) Alcohol Consumption and Site-Specific Cancer Risk: A Comprehensive Dose-Response Meta-Analysis. British Journal of Cancer, 112, 580-593. https://doi.org/10.1038/bjc.2014.579
[15]  Winkelmann, R. and Boes, S. (2006) Analysis of Microdata. Spring-er.
[16]  Cramer, J.S. (2003) Logit Models from Economics and Other Fields. Cambridge University Press. https://doi.org/10.1017/cbo9780511615412
[17]  Maddala, G.S. (1983) Limited-Dependent and Qualitative Variables in Econometrics. Cambridge University Press. https://doi.org/10.1017/cbo9780511810176
[18]  Jiménez‐Valverde, A. (2011) Insights into the Area under the Receiver Operating Characteristic Curve (AUC) as a Discrimination Measure in Species Distribution Modelling. Global Ecology and Biogeography, 21, 498-507. https://doi.org/10.1111/j.1466-8238.2011.00683.x

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133