Aerosol optical depth (AOD) and Ångström Exponent (AE) have become the most crucial metrics in assessing climate change. Despite this, studies related to AOD and AE are rare in Kenya. Using Moderate Resolution Imaging Spectroradiometer (MODIS) data, the present study analysed the spatial and temporal variations of aerosol optical depth at 550 nm (AOD550) and examined the impact of these variations on AE over eight selected towns in Kenya during 2001-2021. The findings indicated high (0.22 ± 0.04) AOD during June-July-August-September (JJAS) and low (0.12 ± 0.04) values during March-April-May (MAM), all associated with prevailing local meteorological conditions. The Ångström Exponent in the wavelength (412 μm - 470 μm) was found to be high (1.1 - 1.7) in most towns, attributed to the dominance of fine-mode particles from increased anthropogenic activities. However, AE412-470 exhibited relatively low values in the range of 0.7 to 1.0 in Garissa due to the dominance of coarse mode particles associated with increased dust particles. Also, the coastal regions of Kenya have moderate to high values of AE412-470 associated with industrial emissions from the urbanized coastal regions of Mombasa. The study has contributed to an indepth understanding of spatial-temporal variations of AOD and AE over the selected towns in Kenya and forms a scientific basis for further research on aerosol science over the region.
Cite this paper
Mulago, S. K. , Makokha, J. W. and Boiyo, R. (2024). Spatial-Temporal Variation of Aerosol Optical Depth and Ångström Exponent over Selected Towns in Kenya: Environmental Impact and Climate Change. Open Access Library Journal, 11, e1803. doi: http://dx.doi.org/10.4236/oalib.1111803.
Li, Z., Rosenfeld, D. and Fan, J. (2017) Aerosols and Their Impact on Radiation, Clouds, Precipitation, and Severe Weather Events. Oxford Research Encyclopaedia of Environmental Science. https://doi.org/10.1093/acrefore/9780199389414.013.126
Nyasulu, M., Haque, M.M., Boiyo, R., Kumar, K.R. and Zhang, Y. (2020) Seasonal Climatology and Relationship between AOD and Cloud Properties Inferred from the MODIS over Malawi, Southeast Africa. Atmospheric Pollution Research, 11, 1933-1952. https://doi.org/10.1016/j.apr.2020.07.023
Rosenfeld, D., Sherwood, S., Wood, R. and Donner, L. (2014) Climate Effects of Aerosol-Cloud Interactions. Science, 343, 379-380. https://doi.org/10.1126/science.1247490
Twomey, S. (1977) The Influence of Pollution on the Shortwave Albedo of Clouds. Journal of the Atmospheric Sciences, 34, 1149-1152. https://doi.org/10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2
Haywood, J. and Boucher, O. (2000) Estimates of the Direct and Indirect Radiative Forcing Due to Tropospheric Aerosols: A Review. Reviews of Geophysics, 38, 513-543. https://doi.org/10.1029/1999rg000078
Zhang, J. and Reid, J.S. (2010) A De-cadal Regional and Global Trend Analysis of the Aerosol Optical Depth Using a Data-Assimilation Grade Over-Water MODIS and Level 2 MISR Aerosol Products. Atmospheric Chemistry and Physics, 10, 10949-10963. https://doi.org/10.5194/acp-10-10949-2010
Rotstayn, L.D. and Lohmann, U. (2002) Tropical Rainfall Trends and the Indirect Aerosol Effect. Journal of Climate, 15, 2103-2116. https://doi.org/10.1175/1520-0442(2002)015<2103:trtati>2.0.co;2
Ramanathan, V., Crutzen, P.J., Kiehl, J.T. and Rosenfeld, D. (2001) Aerosols, Climate, and the Hydrological Cycle. Science, 294, 2119-2124. https://doi.org/10.1126/science.1064034
Boiyo, R., Kumar, K.R. and Zhao, T. (2017) Statistical Intercomparison and Validation of Multisensory Aerosol Optical Depth Retrievals over Three AERONET Sites in Kenya, East Africa. Atmospheric Research, 197, 277-288. https://doi.org/10.1016/j.atmosres.2017.07.012
Torres, O., Bhartia, P.K., Herman, J.R., Ahmad, Z. and Gleason, J. (1998) Derivation of Aerosol Properties from Satellite Meas-urements of Backscattered Ultraviolet Radiation: Theoretical Basis. Journal of Geophysical Research: Atmospheres, 103, 17099-17110. https://doi.org/10.1029/98jd00900
Floutsi, A.A., Korras-Carraca, M.B., Matsoukas, C., Hatzianastassiou, N. and Biskos, G. (2016) Climatology and Trends of Aerosol Optical Depth over the Mediterranean Basin during the Last 12 Years (2002-2014) Based on Collection 006 MODIS-Aqua Data. Science of the Total Environment, 551, 292-303. https://doi.org/10.1016/j.scitotenv.2016.01.192
Kang, N., Kumar, K.R., Yin, Y., Diao, Y. and Yu, X. (2015) Correlation Analysis between AOD and Cloud Pa-rameters to Study Their Relationship over China Using MODIS Data (2003-2013): Impact on Cloud Formation and Climate Change. Aerosol and Air Quality Research, 15, 958-973. https://doi.org/10.4209/aaqr.2014.08.0168
Adesina, A.J., Ku-mar, K.R., Sivakumar, V. and Piketh, S.J. (2016) Intercomparison and Assessment of Long-Term (2004-2013) Multiple Satellite Aerosol Products over Two Con-trasting Sites in South Africa. Journal of Atmospheric and Solar-Terrestrial Physics, 148, 82-95. https://doi.org/10.1016/j.jastp.2016.09.001
Mehta, M., Singh, R., Singh, A., Singh, N. and Anshumali. (2016) Recent Global Aerosol Optical Depth Variations and Trends—A Comparative Study Using MODIS and MISR Level 3 Datasets. Remote Sensing of Environment, 181, 137-150. https://doi.org/10.1016/j.rse.2016.04.004
Boiyo, R., Kumar, K.R. and Zhao, T. (2018) Optical, Microphysical and Radiative Properties of Aerosols over a Tropical Rural Site in Kenya, East Africa: Source Identification, Modification and Aerosol Type Discrimination. Atmospheric Environment, 177, 234-252. https://doi.org/10.1016/j.atmosenv.2018.01.018
Ngaina, J., Mutai, B., Ininda, J. and Muthama, J. (2014) Monitoring Spatial-Temporal Variability of Aerosol over Kenya. Ethiopian Journal of Environmental Studies and Management, 7, 244-252. https://doi.org/10.4314/ejesm.v7i3.3
Zhao, C., Yang, Y., Fan, H., Huang, J., Fu, Y., Zhang, X., Menenti, M., et al. (2020) Aerosol Characteristics and Impacts on Weather and Climate over the Tibetan Plateau. National Science Review, 7, 492-495. https://doi.org/10.1093/nsr/nwz184
Makokha, J.W., Odhiambo, J.O. and Godfrey, J.S. (2017) Trend Analysis of Aerosol Optical Depth and Ångström Ex-ponent Anomaly over East Africa. Atmospheric and Climate Sciences, 7, 588-603. https://doi.org/10.4236/acs.2017.74043
Khamala, G.W., Makokha, J.W., Boiyo, R. and Kumar, K.R. (2023) Spatiotemporal Analysis of Absorbing Aerosols and Radiative Forcing over Environmentally Distinct Stations in East Africa during 2001-2018. Science of the Total Environment, 864, Article ID: 161041. https://doi.org/10.1016/j.scitotenv.2022.161041
Wang, Y., Xia, W., Liu, X., Xie, S., Lin, W., Tang, Q., Zhang, G.J., et al. (2021) Disproportionate Control on Aerosol Burden by Light Rain. Nature Geoscience, 14, 72-76. https://doi.org/10.1038/s41561-020-00675-z
Makokha, J.W. and Angeyo, H.K. (2013) Investigation of Radiative Characteristics of the Kenyan Atmosphere Due to Aerosols Using Sun Spectrophotometry Measurements and the COART Model. Aerosol and Air Quality Research, 13, 201-208. https://doi.org/10.4209/aaqr.2012.06.0146
Boiyo, R., Kumar, K.R. and Zhao, T. (2017) Statistical Intercomparison and Validation of Multisensory Aerosol Op-tical Depth Retrievals over Three AERONET Sites in Kenya, East Africa. Atmos-pheric Research, 197, 277-288. https://doi.org/10.1016/j.atmosres.2017.07.012
Makokha, S.N., Makokha, J.W. and Kelonye, F.B. (2022) Long-Term Assessment of the Spatial Temporal Trends in Selected Cloud Physical Properties over the Three Distinct Sites in Kenya. Open Access Library Journal, 9, 1-18. https://doi.org/10.4236/oalib.1109582
van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., et al. (2010) Global Fire Emissions and the Contribution of Deforestation, Savanna, Forest, Agricultural, and Peat Fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735. https://doi.org/10.5194/acp-10-11707-2010
Ongoma, V. and Chen, H. (2016) Temporal and Spatial Variability of Temperature and Precipitation over East Africa from 1951 to 2010. Meteorology and Atmospheric Physics, 129, 131-144. https://doi.org/10.1007/s00703-016-0462-0
Ntwali, D., Ogwang, B.A. and Ongoma, V. (2016) The Impacts of Topography on Spatial and Temporal Rainfall Distribution over Rwanda Based on WRF Model. Atmospheric and Climate Sci-ences, 6, 145-157. https://doi.org/10.4236/acs.2016.62013
Levy, R.C., Remer, L.A. and Dubovik, O. (2007) Global Aerosol Optical Properties and Ap-plication to Moderate Resolution Imaging Spectroradiometer Aerosol Retrieval over Land. Journal of Geophysical Research: Atmospheres, 112, D13210. https://doi.org/10.1029/2006jd007815
Hsu, C.W., Chang, C.C. and Lin, C.J. (2003) A Practical Guide to Support Vector Classification. Technical Report, De-partment of Computer Science and Information Engineering, University of National Taiwan.
Lam, T. and Hsu, C.H.C. (2006) Predicting Behavioral Intention of Choosing a Travel Destination. Tourism Management, 27, 589-599. https://doi.org/10.1016/j.tourman.2005.02.003
Levy, R.C., Remer, L.A., Kleidman, R.G., Mattoo, S., Ichoku, C., Kahn, R., et al. (2010) Global Evaluation of the Collection 5 MODIS Dark-Target Aerosol Products over Land. Atmospheric Chemistry and Physics, 10, 10399-10420. https://doi.org/10.5194/acp-10-10399-2010
Kaufman, Y.J., Tanré, D., Remer, L.A., Vermote, E.F., Chu, A. and Holben, B.N. (1997) Operational Remote Sensing of Tropospheric Aerosol over Land from EOS Moderate Resolution Imaging Spec-troradiometer. Journal of Geophysical Research: Atmospheres, 102, 17051-17067. https://doi.org/10.1029/96jd03988
Tanré, D., Kaufman, Y.J., Herman, M. and Mattoo, S. (1997) Remote Sensing of Aerosol Properties over Oceans Using the MODIS/EOS Spectral Radiances. Journal of Geophysical Research: Atmospheres, 102, 16971-16988. https://doi.org/10.1029/96jd03437
Remer, L.A., Kauf-man, Y.J., Tanré, D., Mattoo, S., Chu, D.A., Martins, J.V., et al. (2005) The MODIS Aerosol Algorithm, Products, and Validation. Journal of the Atmospheric Sciences, 62, 947-973. https://doi.org/10.1175/jas3385.1
Acosta, D., Adelman, J., Af-folder, T., Akimoto, T., Albrow, M.G., Ambrose, D., et al. (2005) Measurement of the J/ψ Meson and b-Hadron Production cross Sections in ppˉ Collisions at s = 1960 GeV. Physical Review D, 71, Article ID: 032001. https://doi.org/10.1103/physrevd.71.032001
Kerandi, N.M., Laux, P., Ar-nault, J. and Kunstmann, H. (2016) Performance of the WRF Model to Simulate the Seasonal and Interannual Variability of Hydrometeorological Variables in East Af-rica: A Case Study for the Tana River Basin in Kenya. Theoretical and Applied Climatology, 130, 401-418. https://doi.org/10.1007/s00704-016-1890-y
Weatherhead, E.C., Reinsel, G.C., Tiao, G.C., Meng, X., Choi, D., Cheang, W., et al. (1998) Factors Affecting the Detection of Trends: Statistical Considerations and Applications to Environmental Data. Journal of Geophysical Research: Atmospheres, 103, 17149-17161. https://doi.org/10.1029/98jd00995
Kumar, K.R., Sivakumar, V., Yin, Y., Reddy, R.R., Kang, N., Diao, Y., et al. (2014) Long-Term (2003-2013) Climato-logical Trends and Variations in Aerosol Optical Parameters Retrieved from MODIS over Three Stations in South Africa. Atmospheric Environment, 95, 400-408. https://doi.org/10.1016/j.atmosenv.2014.07.001
Kumar, K.R., Yin, Y., Siva-kumar, V., Kang, N., Yu, X., Diao, Y., et al. (2015) Aerosol Climatology and Dis-crimination of Aerosol Types Retrieved from MODIS, MISR and OMI over Durban (29.88˚S, 31.02˚E), South Africa. Atmospheric Environment, 117, 9-18. https://doi.org/10.1016/j.atmosenv.2015.06.058
Kang, N., Kumar, K.R., Hu, K., Yu, X. and Yin, Y. (2016) Long-term (2002-2014) Evolution and Trend in Collection 5.1 Level-2 Aerosol Products Derived from the MODIS and MISR Sensors over the Chinese Yangtze River Delta. Atmospheric Research, 181, 29-43. https://doi.org/10.1016/j.atmosres.2016.06.008