全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Common Features and the Unique Role of Phosphorus in the Bioproducts ATP as Well as DNA and in Intumescent Flame Retardants

DOI: 10.4236/oalib.1111661, PP. 1-28

Subject Areas: Thermochemistry, Green Chemistry, High Polymer Chemistry, Physical Chemistry

Keywords: Intumescent Flame Retardance, Thermogravimetry, Differential Scanning Calorimetry, Thermomechanic Analysis, Self organization, Lattice Energy

Full-Text   Cite this paper   Add to My Lib

Abstract

The natural product Adenosintriphosphate ATP and steel coatings comprise carbohydrate, amine and phosphoric acid. Both exert intumescence, but ATP produces more expanded volume than steel coating. The expansion is determined by Thermomechanical Analysis TMA, the amount of residue by Thermogravimetric Analysis TGA and the evolved or consumed heats by Differential Scanning Calorimetry DSC. Formulas of degradation allow the calculation of decomposition, char formation and expansion. A requirement for intumescence is the product CnHmHPO3 of degradation. Boric and Silicic acids, which also occur as meta acids, showed no capability of intumescence. Only phosphoric esters or amides exert intumescence. Amines are not essential for intumescence. Another common feature of the natural products ATP and DNA Desoxyribonucleic acid and of the amine salts Melamine Polyphosphate, Cyanurate and Barbiturate as well as Guanidinium Polyphosphate, Cyanurate and Sulfamate is self organization. DNA, which self organizes in a helix structure, is comparable with amine salts self organized in lattices. The energies of lattice are dependent on the strength of interaction, they are higher for ion-ion and lower for dipol-dipol arrangement.

Cite this paper

Horacek, H. (2024). Common Features and the Unique Role of Phosphorus in the Bioproducts ATP as Well as DNA and in Intumescent Flame Retardants. Open Access Library Journal, 11, e1661. doi: http://dx.doi.org/10.4236/oalib.1111661.

References

[1]  Yin, N., Zhong, J., Tian, H., Zhou, Z., Ying, W., Dai, J., et al. (2022) Synthesis of P-/N-Containing Bamboo-Activated Carbon toward Enhanced Thermal Stability and Flame Retardancy of Polylactic Acid. Materials, 15, Article 6802. https://doi.org/10.3390/ma15196802
[2]  Jeong, S.H., Heo, J.H., Lee, J.W., Kim, M.J., Park, C.H. and Lee, J.H. (2021) Bioinspired Adenosine Triphosphate as an “all-in-One” Green Flame Retardant via Extremely Intumescent Char Formation. ACS Applied Materials & Interfaces, 13, 22935-22945. https://doi.org/10.1021/acsami.1c02021
[3]  Costes, L., Laoutid, F., Brohez, S. and Dubois, P. (2017) Bio-Based Flame Retardants: When Nature Meets Fire Pro-tection. Materials Science and Engineering: R: Reports, 117, 1-25. https://doi.org/10.1016/j.mser.2017.04.001
[4]  Velencoso, M.M., Battig, A., Markwart, J.C., Schartel, B. and Wurm, F.R. (2018) Molekulare Brandbekämp-fung—Wie moderne Phosphorchemie zur Lösung der Flammschutzaufgabe bei-tragen kann. Angewandte Chemie, 130, 10608-10626. https://doi.org/10.1002/ange.201711735
[5]  Gu, L., Shi, Y. and Zhang, L. (2022) Synthesis and Characterization of Bio-Based “Three Sources in One” Intumescent Flame Retardant Monomer and the Intrinsic Flame Retardant Waterborne Polyure-thane. Journal of Polymer Research, 29, Article No. 189. https://doi.org/10.1007/s10965-022-03033-2
[6]  Li, W., Zhang, H., Hu, X., Yang, W., Cheng, Z. and Xie, C. (2020) Highly Efficient Replacement of Traditional In-tumescent Flame Retardants in Polypropylene by Manganese Ions Doped Melamine Phytate Nanosheets. Journal of Hazardous Materials, 398, Article 123001. https://doi.org/10.1016/j.jhazmat.2020.123001
[7]  Neisius, N.M., Lutz, M., Rentsch, D., Hemberger, P. and Gaan, S. (2014) Synthesis of DOPO-Based Phos-phonamidates and Their Thermal Properties. Industrial & Engineering Chemistry Research, 53, 2889-2896. https://doi.org/10.1021/ie403677k
[8]  Wang, P., Chen, L. and Xiao, H. (2019) Flame Retardant Effect and Mechanism of a Novel DOPO Based Tetrazole Derivative on Epoxy Resin. Journal of Analytical and Applied Pyrolysis, 139, 104-113. https://doi.org/10.1016/j.jaap.2019.01.015
[9]  Liang, S., Hemberger, P., Steglich, M., Simonetti, P., Levalois‐Grützmacher, J., Grützmacher, H., et al. (2020) The Underlying Chemistry to the Formation of PO2 Radicals from Organophosphorus Compounds: A Missing Puzzle Piece in Flame Chemistry. Chemistry—A European Journal, 26, 10795-10800. https://doi.org/10.1002/chem.202001388
[10]  Horacek, H. and Pieh, S. (2000) The Importance of Intumescent Systems for Fire Protection of Plastic Materials. Polymer International, 49, 1106-1114. https://doi.org/10.1002/1097-0126(200010)49:10<1106::aid-pi539>3.0.co;2-i
[11]  Horacek, H. (2009) Reactions of Stoichiometric Intumescent Paints. Journal of Applied Polymer Science, 113, 1745-1756. https://doi.org/10.1002/app.29940
[12]  Horacek, H. (2014) Preparation and Fire Test of Intumescent Powder Coatings. Open Access Library Journal, 1, e564. https://doi.org/10.4236/oalib.1100564
[13]  Posternak, S. (1921) Synthesis of Ino-site Hexaphosphoric Acid. Journal of Biological Chemistry, 46, 453-457. https://doi.org/10.1016/s0021-9258(18)86117-8
[14]  Posternak, S. and Biolog. J. (1921) Synthesis of Inosite Hexaphosphoric Acid. Journal of Biological Chemistry, 46, 453-457. https://doi.org/10.1016/S0021-9258(18)86117-8
[15]  Halpern, Y., Mott, D.M. and Niswander, R.H. (1984) Fire Retardancy of Thermoplastic Materials by Intumescence. Industrial & Engineering Chemistry Product Research and De-velopment, 23, 233-238. https://doi.org/10.1021/i300014a011
[16]  Halpern, Y., Mott, D.M. and Niswander, R.H. (1984) Fire Retardancy of Thermoplastic Materials by Intumescence. Industrial & Engineering Chemistry Product Research and De-velopment, 23, 233-238. https://doi.org/10.1021/i300014a011
[17]  Szolnoki, B., Nguyen Thanh, T.T. and Harakály, G. (2023) Eco-Friendly Synthesis of Novel Phosphorus Flame Retardants for Multiple Purposes. Periodica Polytechnica Chemical Engineering, 67, 573-581. https://doi.org/10.3311/ppch.22758
[18]  Brodski, V., Peschar, R., Schenk, H., Brinkmann, A., Bloemberg, T.G., van Eck, E.R.H., et al. (2005) Structural Analysis of a Melaminium Polyphosphate from X-Ray Powder Diffraction and Solid-State NMR Data. The Journal of Physical Chemistry B, 109, 13529-13537. https://doi.org/10.1021/jp0512715
[19]  Dorofeeva, O.V., Ryzhova, O.N. and Sinditskii, V.P. (2015) Enthalpy of Formation of Guanidine and Its Amino and Nitro Derivatives. Structural Chemistry, 26, 1629-1640. https://doi.org/10.1007/s11224-015-0648-y
[20]  Hoffendahl, C., Duquesne, S., Fontaine, G. and Bourbigot, S. (2014) Decomposition Mechanism of Melamine Borate in Pyrolytic and Thermo-Oxidative Conditions. Thermochimica Acta, 590, 73-83. https://doi.org/10.1016/j.tca.2014.06.016
[21]  Fuwa, R. and Tsuyumoto, I. (2023) Guanidinium Tetraborate Anhydrate and Its Solid-State Reaction Synthesis. Results in Materials, 19, Article 100436. https://doi.org/10.1016/j.rinma.2023.100436
[22]  Dogan, M. (2014) Thermal Sta-bility and Flame Retardancy of Guanidinium and Imidazolium Borate Finished Cotton Fabrics. Journal of Thermal Analysis and Calorimetry, 118, 93-98. https://doi.org/10.1007/s10973-014-3950-9
[23]  Seto, C.T. and Whitesides, G.M. (1993) Synthesis, Characterization, and Thermodynamic Analysis of a 1 1 Self-Assembling Structure Based on the Cyanuric Acid.cntdot.melamine Lattice. Journal of the American Chemical Society, 115, 1330-1340. https://doi.org/10.1021/ja00057a016
[24]  Seto, C.T. and Whitesides, G.M. (1993) Molecular Self-Assembly through Hydrogen Bonding: Supramolecular Aggregates Based on the Cyanuric Acid-Melamine Lattice. Journal of the American Chemical Society, 115, 905-916. https://doi.org/10.1021/ja00056a014
[25]  Manolini, L. and Ungaro R. (2005) Self Assemblies of Melamines and Barbiturates/Cyanurates via Hydrogen Bonds in Cyclic Hexamers (Rosettes) or Infinite Tapes. In: Schalley, C.A., Vogel, F. and Dötz, K.H., Eds., Templates in Chemistry II, Springer Nature, 297.
[26]  Yagai, S., Karatsu, T. and Kitamura, A. (2003) Photoresponsive Mela-mine•Barbiturate Hydrogen-Bonded Assembly. Chemical Communications, 2003, 1844-1845. https://doi.org/10.1039/b305528k
[27]  Yagai, S., Karatsu, T. and Kitamura, A. (2005) Melamine-Barbiturate/Cyanurate Binary Organogels Pos-sessing Rigid Azobenzene-Tether Moiety. Langmuir, 21, 11048-11052. https://doi.org/10.1021/la052076k
[28]  Shalley, C.A., Vogel, F. and Dötz, K.H. (2005) Templates in Chemistry II. Springer Nature. https://doi.org/10.1007/b98632
[29]  Russell, V.A., Etter, M.C. and Ward, M.D. (1994) Layered Materials by Molecular Design: Structural Enforcement by Hy-drogen Bonding in Guanidinium Alkane- and Arenesulfonates. Journal of the American Chemical Society, 116, 1941-1952. https://doi.org/10.1021/ja00084a039
[30]  Jiang, Q. and Ward, M.D. (2014) Crys-tallization under Nanoscale Confinement. Chemical Society Reviews, 43, 2066-2079. https://doi.org/10.1039/c3cs60234f
[31]  Prins, L.J., Reinhoudt, D.N. and Timmerman P. (2001) Nichtkovalente Synthesemit Wassertoffbrücken. An-gewandte Chemie, 113, 2446-2492. https://doi.org/10.1002/1521-3757(20010702)113:13%3C2446::AID-ANGE2446%3E3.0.CO;2-2
[32]  Liu, Y., Xiao, W., Yi, J.J., Hu, C., Park, S. and Ward, M.D. (2015) Regulating the Architectures of Hydrogen-Bonded Frameworks through Topological Enforcement. Journal of the American Chemical Society, 137, 3386-3392. https://doi.org/10.1021/jacs.5b00534
[33]  Xiang, F., Wu, Q., Zhu, W. and Xiao, H. (2013) Comparative Theoretical Studies on Energetic Ionic Salts Composed of Heterocycle-Functionalized Nitraminofurazanate-Based Anions and Triaminoguanidinium Cation. Journal of Chemical & Engineering Data, 59, 295-306. https://doi.org/10.1021/je400844x
[34]  Russell, V.A., Evans, C.C., Li, W. and Ward, M.D. (1997) Nanoporous Molecular Sandwiches: Pillared Two-Dimensional Hydrogen-Bonded Networks with Adjustable Porosity. Science, 276, 575-579. https://doi.org/10.1126/science.276.5312.575
[35]  Sawko, P.M. and Riccitiello, S.R. (1977) Intumescent Coatings Based on 4,4’-Dinitrosulfanilide, Journal of Coatings Technology, 49, 49-53.
[36]  Horacek, H. (2018) Thermody-namic Approach for Halogen Free Flame Retarded Polyamide 6 and 66. Current Applied Polymer Science, 1, 134-151. https://doi.org/10.2174/2452271601666170907151634

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133