Core@shell nanoparticles are advanced functional materials with modified properties combined into a single unity leading to their enhanced physico-chemical properties. In biomedical field, bi/tri/or multi-metallic Gold-Based Nanocrystals (GBNCs) and metamaterials, with core@shell heteronanostructures exhibit superior plasmonic properties with a broad range from sensing technology to nanomedicine. In this review paper, we investigated the recent trends of gold nanoparticles with a particular focus on core@shell heteronanostructured materials and their application in biomedical engineering. All properties are due to their size, shape, and structure-dependent Localized Surface Plasmon Resonances (LSPRs); owing to the enhancement of the plasmonic properties of isotropic and anisotropic Au NPs, including Quantum dots that are tailored to generate electromagnetic “hots sports”; highly sensitive for the diagnostic and therapeutic applications.
Cite this paper
Ntirikwendera, D. , Mukeshimana, S. and Uwamahoro, J. C. (2024). Gold-Based Core@shell Heteronanostructured Materials for Biomedical Engineering Application: Recent Trends & New Perspectives. Open Access Library Journal, 11, e1603. doi: http://dx.doi.org/10.4236/oalib.1111603.
Horvath, H. (2009) Gustav Mie and the Scattering and Absorption of Light by Particles: Historic Developments and Basics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 787-799. https://doi.org/10.1016/j.jqsrt.2009.02.022
Yang, X., Yang, M., Pang, B., Vara, M. and Xia, Y. (2015) Gold Nanomaterials at Work in Biomedicine. Chemical Reviews, 115, 10410-10488. https://doi.org/10.1021/acs.chemrev.5b00193
Milan, J., Niemczyk, K. and Kus-Liśkiewicz, M. (2022) Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. Materials, 15, Article 3355.
https://doi.org/10.3390/ma15093355
Sumbayev, V.V. and Yasinska, I.M. (2012) Biomedical Applications of Gold Nanoparticles. Recent Advances in Circuits, Communications and Signal Processing Biomedical, 1, 10-25.
Jain, P.K., Huang, X., El-Sayed, I.H. and El-Sayed, M.A. (2008) Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41, 1578-1586. https://doi.org/10.1021/ar7002804
Li, N., Zhao, P. and Astruc, D. (2014) Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie International Edition, 53, 1756-1789. https://doi.org/10.1002/anie.201300441
Zhang, J., Tang, Y., Lee, K. and Ouyang, M. (2010) Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science, 327, 1634-1638. https://doi.org/10.1126/science.1184769
Zhang, W., Goh, H.Y.J., Firdoz, S. and Lu, X. (2013) Growth of Au@Ag Core-Shell Pentatwinned Nanorods: Tuning the End Facets. Chemistry—A European Journal, 19, 12732-12738. https://doi.org/10.1002/chem.201301753
Wang, Y., Wan, D., Xie, S., Xia, X., Huang, C.Z. and Xia, Y. (2013) Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth. ACS Nano, 7, 4586-4594. https://doi.org/10.1021/nn401363e
Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D., et al. (2015) Core-Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chemical Society Reviews, 44, 7540-7590. https://doi.org/10.1039/c5cs00343a
Hu, M., Chen, J., Li, Z., Au, L., Hartland, G.V., Li, X., et al. (2006) Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chemical Society Reviews, 35, 1084-1094. https://doi.org/10.1039/b517615h
Talapin, D.V., Lee, J., Kovalenko, M.V. and Shevchenko, E.V. (2009) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews, 110, 389-458. https://doi.org/10.1021/cr900137k
Zhang, J., Tang, Y., Weng, L. and Ouyang, M. (2009) Versatile Strategy for Precisely Tailored Core@shell Nanostructures with Single Shell Layer Accuracy: The Case of Metallic Shell. Nano Letters, 9, 4061-4065. https://doi.org/10.1021/nl902263h
Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. and Orrit, M. (2012) Luminescence Quantum Yield of Single Gold Nanorods. Nano Letters, 12, 4385-4391. https://doi.org/10.1021/nl302196a
Sun, Y., Foley, J.J., Peng, S., Li, Z. and Gray, S.K. (2013) Interfaced Metal Heterodimers in the Quantum Size Regime. Nano Letters, 13, 3958-3964. https://doi.org/10.1021/nl402361b
Kulp, J.N. (2014) Localized Surface Plasmon Resonance: Single Particle to Ensemble Binding Measurements. Ph.D. Thesis, University of California. https://escholarship.org/uc/item/7m72m262
Chen, Y. and Ming, H. (2012) Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor. Photonic Sensors, 2, 37-49. https://doi.org/10.1007/s13320-011-0051-2
Rai, V.N., Srivastava, A.K., Mukherjee, C. and Deb, S.K. (2015) Localized Surface Plasmon Resonance and Refractive Index Sensitivity of Vacuum-Evaporated Nanostructured Gold Thin Films. Indian Journal of Physics, 90, 107-116. https://doi.org/10.1007/s12648-015-0720-x
Xu, M., Tu, G., Ji, M., et al. (2019) Vacuum-Tuned-Atmosphere Induced Assembly of Au@Ag Core/Shell Nanocubes into Multi-Dimensional Superstructures and the Ultrasensitive IAPP Proteins SERS Detection. Nano Research, 12, 1375-1379. https://doi.org/10.1007/s12274-019-2325-8
Mulvihill, M.J., Ling, X.Y., Henzie, J. and Yang, P. (2009) Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Journal of the American Chemical Society, 132, 268-274. https://doi.org/10.1021/ja906954f
Halas, N.J., Lal, S., Chang, W., Link, S. and Nordlander, P. (2011) Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 111, 3913-3961. https://doi.org/10.1021/cr200061k
Niu, W., Zhang, W., Firdoz, S. and Lu, X. (2014) Controlled Synthesis of Palladium Concave Nanocubes with Sub-10-Nanometer Edges and Corners for Tunable Plasmonic Property. Chemistry of Materials, 26, 2180-2186. https://doi.org/10.1021/cm500210u
Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J. and Xia, Y. (2007) Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. Journal of the American Chemical Society, 129, 3665-3675. https://doi.org/10.1021/ja0688023
Dacosta Fernandes, B., Spuch-Calvar, M., Baida, H., Tréguer-Delapierre, M., Oberlé, J., Langot, P., et al. (2013) Acoustic Vibrations of Au Nano-Bipyramids and Their Modification under Ag Deposition: A Perspective for the Development of Nanobalances. ACS Nano, 7, 7630-7639. https://doi.org/10.1021/nn402076m
Khlebtsov, B.N., Liu, Z., Ye, J. and Khlebtsov, N.G. (1954) Au@Ag Core/Shell Cuboids and Dumbbells: Optical Properties and SERS Response. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, 64-75.
Ag, A., et al. (2015) Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Chemical Reviews, 4, 10460-10463.
Goris, B., et al. (2013) Plasmon Mapping in Au@Ag Nanocube Assemblies. The Journal of Physical Chemistry C, 118, 15356-15362. https://doi.org/10.1021/jp502584t
Wang, H., Levin, C.S. and Halas, N.J. (2005) Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society, 127, 14992-14993. https://doi.org/10.1021/ja055633y
Bardhan, R., Lal, S., Joshi, A. and Halas, N.J. (2011) Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research, 44, 936-946. https://doi.org/10.1021/ar200023x
Ye, X.C., et al. (2012) Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano, 6, 2804-2817. https://doi.org/10.1021/nn300315j
Manohar, S., Ungureanu, C. and Van Leeuwen, T.G. (2011) Gold Nanorods as Molecular Contrast Agents in Photoacoustic Imaging: The Promises and the Caveats. Contrast Media & Molecular Imaging, 6, 389-400. https://doi.org/10.1002/cmmi.454
Xiong, Y., Wiley, B., Chen, J., Li, Z., Yin, Y. and Xia, Y. (2005) Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie International Edition, 44, 7913-7917. https://doi.org/10.1002/anie.200502722