全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Gold-Based Core@shell Heteronanostructured Materials for Biomedical Engineering Application: Recent Trends & New Perspectives

DOI: 10.4236/oalib.1111603, PP. 1-17

Subject Areas: Bioengineering

Keywords: Core@shell, Heteronanostructures, Surface Plasmon Resonance, Quantum Dots, Biomedical Engineering

Full-Text   Cite this paper   Add to My Lib

Abstract

Core@shell nanoparticles are advanced functional materials with modified properties combined into a single unity leading to their enhanced physico-chemical properties. In biomedical field, bi/tri/or multi-metallic Gold-Based Nanocrystals (GBNCs) and metamaterials, with core@shell heteronanostructures exhibit superior plasmonic properties with a broad range from sensing technology to nanomedicine. In this review paper, we investigated the recent trends of gold nanoparticles with a particular focus on core@shell heteronanostructured materials and their application in biomedical engineering. All properties are due to their size, shape, and structure-dependent Localized Surface Plasmon Resonances (LSPRs); owing to the enhancement of the plasmonic properties of isotropic and anisotropic Au NPs, including Quantum dots that are tailored to generate electromagnetic “hots sports”; highly sensitive for the diagnostic and therapeutic applications.

Cite this paper

Ntirikwendera, D. , Mukeshimana, S. and Uwamahoro, J. C. (2024). Gold-Based Core@shell Heteronanostructured Materials for Biomedical Engineering Application: Recent Trends & New Perspectives. Open Access Library Journal, 11, e1603. doi: http://dx.doi.org/10.4236/oalib.1111603.

References

[1]  Murphy, C.J., Gole, A.M., Stone, J.W., Sisco, P.N., Alkilany, A.M., Goldsmith, E.C., et al. (2008) Gold Nanoparticles in Biology: Beyond Toxicity to Cellular Imaging. Accounts of Chemical Research, 41, 1721-1730. https://doi.org/10.1021/ar800035u
[2]  Vajtai, R. (2013) Handbook of Nanomaterials. Springer.
[3]  Horvath, H. (2009) Gustav Mie and the Scattering and Absorption of Light by Particles: Historic Developments and Basics. Journal of Quantitative Spectroscopy and Radiative Transfer, 110, 787-799. https://doi.org/10.1016/j.jqsrt.2009.02.022
[4]  Yang, X., Yang, M., Pang, B., Vara, M. and Xia, Y. (2015) Gold Nanomaterials at Work in Biomedicine. Chemical Reviews, 115, 10410-10488.
https://doi.org/10.1021/acs.chemrev.5b00193
[5]  Granada-Ramírez, D.A., et al. (2018) Quantum Dots for Biomedical Applications. Elsevier Ltd.
[6]  Milan, J., Niemczyk, K. and Kus-Liśkiewicz, M. (2022) Treasure on the Earth—Gold Nanoparticles and Their Biomedical Applications. Materials, 15, Article 3355.
https://doi.org/10.3390/ma15093355
[7]  Sumbayev, V.V. and Yasinska, I.M. (2012) Biomedical Applications of Gold Nanoparticles. Recent Advances in Circuits, Communications and Signal Processing Biomedical, 1, 10-25.
[8]  Martin, B. (2008) Mie Theory 1908-2008.
https://scattport.org/files/mie-halle/Hergert-Mie-Theory-1908-2008-Booklet_Uni-Bremen-2008.pdf
[9]  Jain, P.K., Huang, X., El-Sayed, I.H. and El-Sayed, M.A. (2008) Noble Metals on the Nanoscale: Optical and Photothermal Properties and Some Applications in Imaging, Sensing, Biology, and Medicine. Accounts of Chemical Research, 41, 1578-1586.
https://doi.org/10.1021/ar7002804
[10]  Hergert, W. and Wriedt, T. (2012) The Mie Theory. In: Hergert, W. and Wriedt, T., Eds., The Mie Theory: Basics and Applications, Springer, 53-71.
[11]  Bureau of Labor Statistics (2015) What Biomedical Engineers Do. Occupational Handbook Outlook.
[12]  Li, N., Zhao, P. and Astruc, D. (2014) Anisotropic Gold Nanoparticles: Synthesis, Properties, Applications, and Toxicity. Angewandte Chemie International Edition, 53, 1756-1789. https://doi.org/10.1002/anie.201300441
[13]  Zhang, J., Tang, Y., Lee, K. and Ouyang, M. (2010) Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science, 327, 1634-1638.
https://doi.org/10.1126/science.1184769
[14]  Chen, L., Ji, F., Xu, Y., He, L., Mi, Y., Bao, F., et al. (2014) High-Yield Seedless Synthesis of Triangular Gold Nanoplates through Oxidative Etching. Nano Letters, 14, 7201-7206. https://doi.org/10.1021/nl504126u
[15]  Zhang, W., Goh, H.Y.J., Firdoz, S. and Lu, X. (2013) Growth of Au@Ag Core-Shell Pentatwinned Nanorods: Tuning the End Facets. Chemistry—A European Journal, 19, 12732-12738. https://doi.org/10.1002/chem.201301753
[16]  Wang, Y., Wan, D., Xie, S., Xia, X., Huang, C.Z. and Xia, Y. (2013) Synthesis of Silver Octahedra with Controlled Sizes and Optical Properties via Seed-Mediated Growth. ACS Nano, 7, 4586-4594. https://doi.org/10.1021/nn401363e
[17]  Gawande, M.B., Goswami, A., Asefa, T., Guo, H., Biradar, A.V., Peng, D., et al. (2015) Core-Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis. Chemical Society Reviews, 44, 7540-7590. https://doi.org/10.1039/c5cs00343a
[18]  Wang, F., Sun, L., Feng, W., Chen, H., Yeung, M.H., Wang, J., et al. (2010) Heteroepitaxial Growth of Core-Shell and Core-Multishell Nanocrystals Composed of Palladium and Gold. Small, 6, 2566-2575. https://doi.org/10.1002/smll.201000817
[19]  Hu, M., Chen, J., Li, Z., Au, L., Hartland, G.V., Li, X., et al. (2006) Gold Nanostructures: Engineering Their Plasmonic Properties for Biomedical Applications. Chemical Society Reviews, 35, 1084-1094. https://doi.org/10.1039/b517615h
[20]  Talapin, D.V., Lee, J., Kovalenko, M.V. and Shevchenko, E.V. (2009) Prospects of Colloidal Nanocrystals for Electronic and Optoelectronic Applications. Chemical Reviews, 110, 389-458. https://doi.org/10.1021/cr900137k
[21]  Zhang, J., Tang, Y., Weng, L. and Ouyang, M. (2009) Versatile Strategy for Precisely Tailored Core@shell Nanostructures with Single Shell Layer Accuracy: The Case of Metallic Shell. Nano Letters, 9, 4061-4065. https://doi.org/10.1021/nl902263h
[22]  Yorulmaz, M., Khatua, S., Zijlstra, P., Gaiduk, A. and Orrit, M. (2012) Luminescence Quantum Yield of Single Gold Nanorods. Nano Letters, 12, 4385-4391.
https://doi.org/10.1021/nl302196a
[23]  Routzahn, A.L. and Jain, P.K. (2015) Luminescence Blinking of a Reacting Quantum Dot. Nano Letters, 15, 2504-2509. https://doi.org/10.1021/acs.nanolett.5b00068
[24]  Sattler, K. (2010) Handbook of Nanophysics: Clusters and Fullerenes, vol. c.
[25]  Sun, Y., Foley, J.J., Peng, S., Li, Z. and Gray, S.K. (2013) Interfaced Metal Heterodimers in the Quantum Size Regime. Nano Letters, 13, 3958-3964.
https://doi.org/10.1021/nl402361b
[26]  Kulp, J.N. (2014) Localized Surface Plasmon Resonance: Single Particle to Ensemble Binding Measurements. Ph.D. Thesis, University of California.
https://escholarship.org/uc/item/7m72m262
[27]  Chen, Y. and Ming, H. (2012) Review of Surface Plasmon Resonance and Localized Surface Plasmon Resonance Sensor. Photonic Sensors, 2, 37-49.
https://doi.org/10.1007/s13320-011-0051-2
[28]  Rai, V.N., Srivastava, A.K., Mukherjee, C. and Deb, S.K. (2015) Localized Surface Plasmon Resonance and Refractive Index Sensitivity of Vacuum-Evaporated Nanostructured Gold Thin Films. Indian Journal of Physics, 90, 107-116.
https://doi.org/10.1007/s12648-015-0720-x
[29]  Mayer, K.M. and Hafner, J.H. (2011) Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111, 3828-3857. https://doi.org/10.1021/cr100313v
[30]  Tu, G., Deogratias, N., Xu, M., Li, X., Liu, J., Jiang, L., et al. (2018) Sharp-Featured Au@Ag Core/Shell Nanocuboid Synthesis and the Label-Free Ultrasensitive SERS Detection of Protein Single-Point Mutations. Materials Chemistry Frontiers, 2, 1720-1724. https://doi.org/10.1039/c8qm00185e
[31]  Xu, M., Tu, G., Ji, M., et al. (2019) Vacuum-Tuned-Atmosphere Induced Assembly of Au@Ag Core/Shell Nanocubes into Multi-Dimensional Superstructures and the Ultrasensitive IAPP Proteins SERS Detection. Nano Research, 12, 1375-1379.
https://doi.org/10.1007/s12274-019-2325-8
[32]  Sekhon, J.S. and Verma, S.S. (2011) Tunable Plasmonic Properties of Silver Nanorods for Nanosensing Applications. Journal of Materials Science, 47, 1930-1937.
https://doi.org/10.1007/s10853-011-5983-9
[33]  Fang, Z. and Zhu, X. (2013) Plasmonics in Nanostructures. Advanced Materials, 25, 3840-3856. https://doi.org/10.1002/adma.201301203
[34]  Wang, H., Gao, Y., Liu, J., Li, X., Ji, M., Zhang, E., et al. (2019) Efficient Plasmonic Au/CdSe Nanodumbbell for Photoelectrochemical Hydrogen Generation beyond Visible Region. Advanced Energy Materials, 9, Article ID: 1803889.
https://doi.org/10.1002/aenm.201803889
[35]  Beier, H.T., Cowan, C.B., Chou, I., Pallikal, J., Henry, J.E., Benford, M.E., et al. (2007) Application of Surface-Enhanced Raman Spectroscopy for Detection of Beta Amyloid Using Nanoshells. Plasmonics, 2, 55-64.
https://doi.org/10.1007/s11468-007-9027-x
[36]  Mulvihill, M.J., Ling, X.Y., Henzie, J. and Yang, P. (2009) Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Journal of the American Chemical Society, 132, 268-274.
https://doi.org/10.1021/ja906954f
[37]  Yang, X., Ishikawa, A., Yin, X. and Zhang, X. (2011) Hybrid Photonic-Plasmonic Crystal Nanocavities. ACS Nano, 5, 2831-2838. https://doi.org/10.1021/nn1033482
[38]  Halas, N.J., Lal, S., Chang, W., Link, S. and Nordlander, P. (2011) Plasmons in Strongly Coupled Metallic Nanostructures. Chemical Reviews, 111, 3913-3961.
https://doi.org/10.1021/cr200061k
[39]  Ma, Y., Li, W., Cho, E.C., Li, Z., Yu, T., Zeng, J., et al. (2010) Au@Ag Core-Shell Nanocubes with Finely Tuned and Well-Controlled Sizes, Shell Thicknesses, and Optical Properties. ACS Nano, 4, 6725-6734. https://doi.org/10.1021/nn102237c
[40]  Niu, W., Zhang, W., Firdoz, S. and Lu, X. (2014) Controlled Synthesis of Palladium Concave Nanocubes with Sub-10-Nanometer Edges and Corners for Tunable Plasmonic Property. Chemistry of Materials, 26, 2180-2186.
https://doi.org/10.1021/cm500210u
[41]  Xiong, Y., Cai, H., Wiley, B.J., Wang, J., Kim, M.J. and Xia, Y. (2007) Synthesis and Mechanistic Study of Palladium Nanobars and Nanorods. Journal of the American Chemical Society, 129, 3665-3675. https://doi.org/10.1021/ja0688023
[42]  Dacosta Fernandes, B., Spuch-Calvar, M., Baida, H., Tréguer-Delapierre, M., Oberlé, J., Langot, P., et al. (2013) Acoustic Vibrations of Au Nano-Bipyramids and Their Modification under Ag Deposition: A Perspective for the Development of Nanobalances. ACS Nano, 7, 7630-7639. https://doi.org/10.1021/nn402076m
[43]  Khlebtsov, B.N., Liu, Z., Ye, J. and Khlebtsov, N.G. (1954) Au@Ag Core/Shell Cuboids and Dumbbells: Optical Properties and SERS Response. Journal of Quantitative Spectroscopy and Radiative Transfer, 167, 64-75.
[44]  Ag, A., et al. (2015) Anisotropic Etching of Silver Nanoparticles for Plasmonic Structures Capable of Single-Particle SERS. Chemical Reviews, 4, 10460-10463.
[45]  Del Carlo, M., et al. (2015) Sensors and Microsystems. Lecture Notes in Electrical Engineering, 91, 361-365.
[46]  Goris, B., et al. (2013) Plasmon Mapping in Au@Ag Nanocube Assemblies. The Journal of Physical Chemistry C, 118, 15356-15362.
https://doi.org/10.1021/jp502584t
[47]  Yoo, H., Millstone, J.E., Li, S., Jang, J., Wei, W., Wu, J., et al. (2009) Core-Shell Triangular Bifrustums. Nano Letters, 9, 3038-3041. https://doi.org/10.1021/nl901513g
[48]  Wang, H., Levin, C.S. and Halas, N.J. (2005) Nanosphere Arrays with Controlled Sub-10-nm Gaps as Surface-Enhanced Raman Spectroscopy Substrates. Journal of the American Chemical Society, 127, 14992-14993.
https://doi.org/10.1021/ja055633y
[49]  Sattler, K.D. (2010) Handbook of Nanophysics. CRC Press.
https://doi.org/10.1201/9781420075410
[50]  Howes, P.D., Chandrawati, R. and Stevens, M.M. (2014) Colloidal Nanoparticles as Advanced Biological Sensors. Science, 346, Article ID: 1247390.
https://doi.org/10.1126/science.1247390
[51]  Bardhan, R., Lal, S., Joshi, A. and Halas, N.J. (2011) Theranostic Nanoshells: From Probe Design to Imaging and Treatment of Cancer. Accounts of Chemical Research, 44, 936-946. https://doi.org/10.1021/ar200023x
[52]  Shi, J., et al. (2015) Templated Techniques for the Synthesis and Assembly of Plasmonic Nanostructures. Chemical Reviews, 115, 3736-3827.
[53]  Ye, X.C., et al. (2012) Improved Size-Tunable Synthesis of Monodisperse Gold Nanorods through the Use of Aromatic Additives. ACS Nano, 6, 2804-2817.
https://doi.org/10.1021/nn300315j
[54]  Manohar, S., Ungureanu, C. and Van Leeuwen, T.G. (2011) Gold Nanorods as Molecular Contrast Agents in Photoacoustic Imaging: The Promises and the Caveats. Contrast Media & Molecular Imaging, 6, 389-400. https://doi.org/10.1002/cmmi.454
[55]  Xiong, Y., Wiley, B., Chen, J., Li, Z., Yin, Y. and Xia, Y. (2005) Corrosion-Based Synthesis of Single-Crystal Pd Nanoboxes and Nanocages and Their Surface Plasmon Properties. Angewandte Chemie International Edition, 44, 7913-7917.
https://doi.org/10.1002/anie.200502722

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133