In this paper, three examples of non-Hermitian Hamiltonians were presented on which an approach was applied based on the Heisenberg equation of motion, namely a first-order equation in the coordinate and momentum.
Cite this paper
Iyela, D. B. , Nkwambiaya, P. L. and Kibamba, N. A. (2024). Heisenberg Equation of Motion Approach to Non-Hermitian Hamiltonians with Real Spectrum. Open Access Library Journal, 11, e1537. doi: http://dx.doi.org/10.4236/oalib.1111537.
Falomir, H. and Pisani, P.A.G. (2001) Hamiltonian Self-Adjoint Extensions for (2 1)-Dimensional Di-rac Particles. Journal of Physics A: Mathematical and General, 34, 4143-4154. https://doi.org/10.1088/0305-4470/34/19/312
Mostafazadeh, A. (2005) Script Pscript T-Symmetric Cubic Anharmonic Oscillator as a Physical Model. Journal of Physics A: Mathematical and General, 38, 8185-8185. https://doi.org/10.1088/0305-4470/38/37/c01
Swanson, M.S. (2004) Transition Elements for a Non-Hermitian Quadratic Hamiltonian. Journal of Mathematical Physics, 45, 585-601. https://doi.org/10.1063/1.1640796
Govaerts, J., Bwayi, C.M. and Mattelaer, O. (2009) The Klauder-Daubechies Construction of the Phase-Space Path Integral and the Harmonic Oscillator. Journal of Physics A: Mathematical and Theoreti-cal, 42, 445304. https://doi.org/10.1088/1751-8113/42/44/445304
Jones, H.F. (2005) On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts. Journal of Physics A: Mathematical and General, 38, 1741-1746. https://doi.org/10.1088/0305-4470/38/8/010
Musumbu, D.P., Geyer, H.B. and Heiss, W.D. (2006) Choice of a Metric for the Non-Hermitian Oscillator. Journal of Physics A: Mathematical and Theoretical, 40, F75-F80. https://doi.org/10.1088/1751-8113/40/2/f03