全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Heisenberg Equation of Motion Approach to Non-Hermitian Hamiltonians with Real Spectrum

DOI: 10.4236/oalib.1111537, PP. 1-8

Subject Areas: Mathematics

Keywords: Non-Hermitian Hamiltonians, The Coordinate and Momentum

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, three examples of non-Hermitian Hamiltonians were presented on which an approach was applied based on the Heisenberg equation of motion, namely a first-order equation in the coordinate and momentum.

Cite this paper

Iyela, D. B. , Nkwambiaya, P. L. and Kibamba, N. A. (2024). Heisenberg Equation of Motion Approach to Non-Hermitian Hamiltonians with Real Spectrum. Open Access Library Journal, 11, e1537. doi: http://dx.doi.org/10.4236/oalib.1111537.

References

[1]  Miao, Y.G. and Xu, Z.M. (2013) Non-Hermitian Hamiltonians Viewed from Heisenberg Equation of Motion. arXiv: 1212.6705v3.
[2]  Falomir, H. and Pisani, P.A.G. (2001) Hamiltonian Self-Adjoint Extensions for (2 1)-Dimensional Di-rac Particles. Journal of Physics A: Mathematical and General, 34, 4143-4154. https://doi.org/10.1088/0305-4470/34/19/312
[3]  Bender, C.M., Meisinger, P.N. and Wang, Q.H. (2002) All Hermitian Hamiltonian Have Parity. arXiv: quant-ph/0211123v2.
[4]  Mostafazadeh, A. (2005) Script Pscript T-Symmetric Cubic Anharmonic Oscillator as a Physical Model. Journal of Physics A: Mathematical and General, 38, 8185-8185. https://doi.org/10.1088/0305-4470/38/37/c01
[5]  Jones, H.F. and Mateo, J. (2006) Equivalent Hermitian Hamiltonian for the Non-Hermitian-x4 potential. Physical Review D, 73, Article ID: 085002. https://doi.org/10.1103/physrevd.73.085002
[6]  da Providencia, J., Bebiano, N. and da Providencia, J.P. (2009) Non Hermitian Operators Real Spectrum in Quantum Mechanics. arXiv: 0909.3054v4.
[7]  Bagarello, F. (2011) Pseudo-Bosons, So Far. Reports on Mathematical Physics, 68, 175-210. https://doi.org/10.1016/s0034-4877(12)60004-4
[8]  Jones, H.F. (2009) Gauging non-Hermitian Hamiltonians. Journal of Physics A: Mathematical and Theoretical, 42, Article ID: 135303. https://doi.org/10.1088/1751-8113/42/13/135303
[9]  Swanson, M.S. (2004) Transition Elements for a Non-Hermitian Quadratic Hamiltonian. Journal of Mathematical Physics, 45, 585-601. https://doi.org/10.1063/1.1640796
[10]  Govaerts, J., Bwayi, C.M. and Mattelaer, O. (2009) The Klauder-Daubechies Construction of the Phase-Space Path Integral and the Harmonic Oscillator. Journal of Physics A: Mathematical and Theoreti-cal, 42, 445304. https://doi.org/10.1088/1751-8113/42/44/445304
[11]  Jones, H.F. (2005) On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts. Journal of Physics A: Mathematical and General, 38, 1741-1746. https://doi.org/10.1088/0305-4470/38/8/010
[12]  Musumbu, D.P., Geyer, H.B. and Heiss, W.D. (2006) Choice of a Metric for the Non-Hermitian Oscillator. Journal of Physics A: Mathematical and Theoretical, 40, F75-F80. https://doi.org/10.1088/1751-8113/40/2/f03

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133