全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Bauxite Residue Valorisation through Reductive Smelting: Production of Inorganic Polymer Fire Resistant Building Materials

DOI: 10.4236/oalib.1111030, PP. 1-10

Subject Areas: Material Experiment

Keywords: Inorganic Polymers, Bauxite Residue Thermal Treatment, Fire Resistant Material

Full-Text   Cite this paper   Add to My Lib

Abstract

In this study thermal treated bauxite residue is used to produce inorganic polymer building material with fire resistant properties. The calcined bauxite residue from the EAF furnace of Mytilineos was mixed with alkaline solution and casted to cure. The inorganic polymer material was tested for its fire resistant properties and pass all criteria of ISO 834 fire temperature curve.

Cite this paper

Sakkas, K. M. , Georgopoulos, C. , Balomenos, E. , Davris, P. and Makrigiannis, I. (2024). Bauxite Residue Valorisation through Reductive Smelting: Production of Inorganic Polymer Fire Resistant Building Materials. Open Access Library Journal, 11, e1030. doi: http://dx.doi.org/10.4236/oalib.1111030.

References

[1]  Duxson, P., Fernández-Jiménez, A., Provis, J.L., et al. (2007) Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
[2]  Provis, J.L., Van Deventer, J.S.J. (2014) Alkali Activated Materials: State-Of-The-Art Report, RILEM TC 224-AAM. In: Provis, J.L., Van Deventer, J.S.J., Eds., RILEM State Art Reports, Springer, Dordrecht, Vol. 13. https://doi.org/10.1007/978-94-007-7672-2
[3]  Davidovits, J. (2018) Why Alkali-Activated Materials (AAM) Are NOT Geopolymers? Technical Paper # 25. https://www.geopolymer.org/library/technical-papers/25-why-alkali-activated-materials-aam-are-not-geopolymers/
[4]  Van Deventer, J.S.J., Provis, J.L., Duxson, P., et al. (2010) Chemical Research and Climate Change as Drivers in the Commercial Adoption of Alkali Activated Materials. Waste and Biomass Valorization, 1, 145-155. https://doi.org/10.1007/s12649-010-9015-9
[5]  Davidovits, J. (1991) Geopolymers. Journal of Thermal Analysis, 37, 1633-1656. https://doi.org/10.1007/BF01912193
[6]  Duxson, P., Fernández-Jiménez, A., Provis, J.L., et al. (2007) Geopolymer Technology: The Current State of the Art. Journal of Materials Science, 42, 2917-2933. https://doi.org/10.1007/s10853-006-0637-z
[7]  Lemougna, P.N., Wang, K.-T., Tang, Q. and Cui, X.-M. (2017) Synthesis and Characterization of Low Temperature (<800°C) Ceramics from Red Mud Geopolymer precursor. Construction and Building Materials, 131, 564-573. https://doi.org/10.1016/j.conbuildmat.2016.11.108
[8]  Lemougna, P.N., Wang, K.-T., Tang, Q. and Cui, X.-M. (2017) Study on the Development of Inorganic Polymers from Red Mud and Slag System: Application in Mortar and Lightweight Materials. Construction and Building Materials, 156, 486-495. https://doi.org/10.1016/j.conbuildmat.2017.09.015
[9]  Pontikes, Y., Machiels, L., Onisei, S., Pandelaers, L., Geysen, D., Jones, P.T. and Blanpain, B. (2013) Slags with a High Al and Fe Content as Precursors for Inorganic Polymers. Applied Clay Science, 73, 93-102. https://doi.org/10.1016/j.clay.2012.09.020
[10]  Wang, S.-D. and Scrivener, K.L. (1995) Hydration Products of Alkali Activated Slag Cement. Cement and Concrete Research, 25, 561-571. https://doi.org/10.1016/0008-8846(95)00045-E
[11]  Silviana, O., Heveline, V., Tobias, H., et al. (2017) Synthesis and Characterisation of Calciumsulfo-Ferroaluminate Cement Clinker Prepared with Bauxite Residue as Raw Material. Proceedings of the 5th International Slag Valorisation Symposium, Leuven, 3-5 April 2017, 287-290. https://lirias.kuleuven.be/1771219&lang=en
[12]  Peys, A., Douvalis, A.P., Hallet, V., Rahier, H., Blanpain, B., Pontikes, Y. (2019). Inorganic Polymers from CaO-FeOx-SiO2 Slag: The Start of Oxidation of Fe and the Formation of a Mixed Valence Binder. Frontiers in Materials, 6, Article 212. https://doi.org/10.3389/fmats.2019.00212
[13]  Peys, A., White, C.E., Rahier, H., Blanpain, B. and Pontikes, Y. (2019). Alkali-Activation of CaO-FeOx-SiO2 Slag: Formation Mechanism from in-situ X-Ray Total Scattering. Cement and Concrete Research, 122, 179-188. https://doi.org/10.1016/j.cemconres.2019.04.019
[14]  Shi, C.J., Roy, D. and Krivenko, P. (2003) Alkali-Activated Cements and Concretes. CRC Press, London. https://doi.org/10.1201/9781482266900
[15]  Shi, C.J., Fernández Jiménez, A. and Palomo, A. (2011) New Cements for the 21st Century: The Pursuit of an Alternative to Portland Cement. Cement and Concrete Research, 41, 750-763. https://doi.org/10.1016/j.cemconres.2011.03.016
[16]  Ye, N., Yang, J., Ke, X., Zhu, J., Li, Y., Xiang, C., Wang, H., Li, L. and Xiao, B. (2014) Synthesis and Characterization of Geopolymer from Bayer Red Mud with Thermal Pretreatment. Journal of the American Ceramic Society, 97, 1652-1660. https://doi.org/10.1111/jace.12840
[17]  Hairi, S.N.M., Jameson, G.N.L., Rogers, J.J., et al. (2015) Synthesis and Properties of Inorganic Polymers (Geopolymers) Derived from Bayer Process Residue (Red Mud) and Bauxite. Journal of Materials Science, 50, 7713-7724. https://doi.org/10.1007/s10853-015-9338-9
[18]  Balomenos, E., Davris, P., Sakkas, K.M., Georgopoulos, C. and Makrigiannis, I. (2023) Bauxite Residue Valorisation through Reductive Smelting: Coproduction of Pig Iron and Precursor for Inorganic Polymer Fire Resistant Building Materials. Open Access Library Journal, 11, 1-11. https://doi.org/10.4236/oalib.1111029
[19]  Panias, D., Giannopoulou, I. and Boufounos, D. (2014) Valorization of Alumina Red Mud for Production of Geopolymeric Bricks and Tiles. In: Grandfield, J., Eds., Light Metals, Springer, Cham. https://doi.org/10.1002/9781118888438.ch27

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413