全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Bauxite Residue Valorisation through Reductive Smelting: Coproduction of Pig Iron and Precursor for Inorganic Polymer Fire Resistant Building Materials

DOI: 10.4236/oalib.1111029, PP. 1-15

Subject Areas: Material Experiment

Keywords: Inorganic Polymers, Bauxite Residue Thermal Treatment, Fire Resistant Material

Full-Text   Cite this paper   Add to My Lib

Abstract

In this study thermal treatment of bauxite residue is studied to produce two economic viable products: pig iron and inorganic polymer building material with fire resistant properties. The first campaign was successfully completed in the EAF 1 MW in Mytilineos plant, Ag. Nikolaos. The pyrometallurgical BR slag produced, was then used for the production of geopolymer fire resistant products.

Cite this paper

Balomenos, E. , Davris, P. , Sakkas, K. M. , Georgopoulos, C. and Makrigiannis, I. (2024). Bauxite Residue Valorisation through Reductive Smelting: Coproduction of Pig Iron and Precursor for Inorganic Polymer Fire Resistant Building Materials. Open Access Library Journal, 11, e1029. doi: http://dx.doi.org/10.4236/oalib.1111029.

References

[1]  Evans, K., Nordheim, E. and Tsesmelis, K. (2012) Bauxite Residue Management. In: Suarez, C.E., Ed., Light Metals, Springer, Cham, 63-66. https://doi.org/10.1007/978-3-319-48179-1_11
[2]  Mayes, W.M., Burke, I.T., Gomes, H.I., et al. (2016) Advances in Understanding Environmental Risks of Red Mud After the Ajka Spill, Hungary. Journal of Sustainable Metallurgy, 2, 332-343. https://doi.org/10.1007/s40831-016-0050-z
[3]  Palmer, S.J. and Frost, R.L. (2009) Characterisation of Bauxite and Seawater Neutralised Bauxite Residue Using XRD and Vibrational Spectroscopic Techniques. Journal of Materials Science, 44, 55-63. https://doi.org/10.1007/s10853-008-3123-y
[4]  Gomes, H.I., Mayes, W.M., Rogerson, M., Stewart, D.I. and Burke, I.T. (2016) Alkaline Residues and the Environment: A Review of Impacts, Management Practices and Opportunities. Journal of Cleaner Production, 112, 3571-3582. https://doi.org/10.1016/j.jclepro.2015.09.111
[5]  Evans, K. (2016) The History, Challenges, and New Developments in the Management and Use of Bauxite Residue. Journal of Sustainable Metallurgy, 2, 316-331. https://doi.org/10.1007/s40831-016-0060-x
[6]  Higgins, D., Curtin, T., Pawlett, M., et al. (2016) The Potential for Constructed Wetlands to Treat Alkaline Bauxite-Residue Leachate: Phragmites Australis Growth. Environmental Science and Pollution Research, 23, 24305-24315. https://doi.org/10.1007/s11356-016-7702-1
[7]  Zhu, F., Xue, S., Hartley, W., et al. (2016) Novel Predictors of Soil Genesis Following Natural Weathering Processes of Bauxite Residues. Environmental Science and Pollution Research, 23, 2856-2863. https://doi.org/10.1007/s11356-015-5537-9
[8]  Klauber, C., Gräfe, M. and Power, G. (2011) Bauxite Residue Issues: II. Options for Residue Utilization. Hydrometallurgy, 108, 11-32. https://doi.org/10.1016/j.hydromet.2011.02.007
[9]  Liu, Z.B. and Li, H.X. (2015) Metallurgical Process for Valuable Elements Recovery from Red Mud—A Review. Hydrometallurgy, 155, 29-43. https://doi.org/10.1016/j.hydromet.2015.03.018
[10]  Paramguru, R.K., Rath, P.C. and Misra, V.N. (2004) Trends in Red Mud Utilization—A Review. Mineral Processing and Extractive Metallurgy Review, 26, 1-29. https://doi.org/10.1080/08827500490477603
[11]  Kumar, S., Kumar, R. and Bandopadhyay, A. (2006) Innovative Methodologies for the Utilisation of Wastes from Metallurgical and Allied Industries. Resources, Conservation and Recycling, 48, 301-314. https://doi.org/10.1016/j.resconrec.2006.03.003
[12]  Liu, Y. and Naidu, R. (2014) Hidden Values in Bauxite Residue (Red Mud): Recovery of Metals. Waste Management, 34, 2662-2673. https://doi.org/10.1016/j.wasman.2014.09.003
[13]  Liu, W., Yang, J. and Xiao, B. (2009) Application of Bayer Red Mud for Iron Recovery and Building Material Production from Alumosilicate Residues. Journal of Hazardous Materials, 161, 474-478. https://doi.org/10.1016/j.jhazmat.2008.03.122
[14]  Xenidis, A., Zografidis, C., Kotsis, I. and Boufounos, D. (2011) Reductive Smelting of Greek Bauxite Residues for Iron Production. In: Lindsay, S.J., Ed., Light Metals, Springer, Cham, 113-117. https://doi.org/10.1007/978-3-319-48160-9_20
[15]  Zhu, D.Q., Chun, T.J., Pan, J., et al. (2012) Recovery of Iron from High-Iron Red Mud by Reduction Roasting With Adding Sodium Salt. Journal of Iron and Steel Research International, 19, 1-5. https://doi.org/10.1016/S1006-706X(12)60131-9
[16]  Jayshankar, K., et al. (2013) Production of Pig Iron and Portland Slag Cement from Red Mud by Application of Novel Thermal Plasma Technique. Technical Proceedings of IBAAS-CHALIECO 2013 International Symposium, Nanning.
[17]  Balomnenos, E., Kastritis, D., Panias, D., Paspaliaris, I. and Boufounos, D. (2014) The Enexal Bauxite Residue Treatment Process: Industrial Scale Pilot Plant Results. In: Grandfield, J., Ed., Light Metals, Springer, Cham, 143-147. https://doi.org/10.1007/978-3-319-48144-9_25
[18]  Mason L.G., et al. (2007) Focus on Hazardous Materials Research, Chapter 3: Red Mud and Paper Mill Sludge Treatment and Reuse for the Recovery of Contaminated Soils, Sediments and Waters: A Focus on Latest Trends. Nova Science Publishers, Inc, New York, 77-142.
[19]  Davidovits, J. (2005) Geopolymer Chemistry and Sustainable Development. The Poly (Sialate) Terminology: A Very Useful and Simple Model for the Promotion and Understanding of Green-Chemistry. Geopolymer Institute, Saint-Quentin, France, 9-15.
[20]  Dimas, D., Giannopoulou, I. and Panias, D. (2009) Utilization of Alumina Red Mud for Synthesis of Inorganic Polymeric Materials. Mineral Processing and Extractive Metallurgy Review, 30, 211-239. https://doi.org/10.1080/08827500802498199
[21]  Hertel, T. and Pontikes, Y. (2020) Geopolymers, Inorganic Polymers, Alkali-Activated Materials and Hybrid Binders from Bauxite Residue (Red Mud) —Putting Things in Perspective. Journal of Cleaner Production, 258, Article ID: 120610. https://doi.org/10.1016/j.jclepro.2020.120610
[22]  Hairi, S.N.M., Jameson, G.N.L., Rogers, J.J., et al. (2015) Synthesis and Properties of Inorganic Polymers (Geopolymers) Derived from Bayer Process Residue (Red Mud) and Bauxite. Journal of Materials Science, 50, 7713-7724. https://doi.org/10.1007/s10853-015-9338-9
[23]  Papantoniou, I.G., Pantelis, D.I. and Manolakos, D.E. (2018) Powder Metallurgy Route Aluminium Foams: A Study of the Effect of Powder Morphology, Compaction Pressure and Foaming Temperature on the Porous Structure. Procedia Structural Integrity, 10, 243-248. https://doi.org/10.1016/j.prostr.2018.09.034
[24]  Hertel, T., Novais, R.M., Alarcón, R.M., Labrincha, J.A. and Pontikes, Y. (2019) Use of Modified Bauxite Residue-Based Porous Inorganic Polymer Monoliths as Adsorbents of Methylene Blue. Journal of Cleaner Production, 227, 877-889. https://doi.org/10.1016/j.jclepro.2019.04.084
[25]  Panias, D., Giannopoulou, I.P. and Perraki, T. (2007) Effect of Synthesis Parameters on the Mechanical Properties of Fly Ash-Based Geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 301, 246-254. https://doi.org/10.1016/j.colsurfa.2006.12.064
[26]  Barbosa, V.F.F. and MacKenzie, K.J.D. (2003) Thermal Behaviour of Inorganic Geopolymers and Composites Derived from Sodium Polysialate. Materials Research Bulletin, 38, 319-331. https://doi.org/10.1016/S0025-5408(02)01022-X
[27]  Barbosa, V.F.F., MacKenzie, K.J.D. and Thaumaturgo, C. (2000) Synthesis and Characterisation of Materials Based on Inorganic Polymers of Alumina and Silica: Sodium Polysialate Polymers. International Journal of Inorganic Materials, 2, 309-317. https://doi.org/10.1016/S1466-6049(00)00041-6
[28]  EFNARC (2006) Guidelines for Testing Fire Protection Systems for Tunnels. https://efnarc.org/publications

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413