全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Spectral Analysis of the Derivation of Green’s Function of Helmholtz Integral Equation via Dirac-Delta Function and Cauchy Residual Approach

DOI: 10.4236/oalib.1110245, PP. 1-15

Subject Areas: Mathematics, Mathematical Analysis, Partial Differential Equation, Ordinary Differential Equation

Keywords: Helmholtz Integral Equation, Summerfield Radiation Condition, Cauchy Residual Approach, Classical Schr?dinger Wave Equation, Green’s Function

Full-Text   Cite this paper   Add to My Lib

Abstract

In this study, we have determined Green’s functions for Helmholtz integral equations in a spherical polar coordinate system in the whole plane domain with the aid of spectral Fourier transform technique. Our intended Green’s function solution has a dominant role to represent wave propagation with a high quantum wave number. The Diracdelta function also plays an important role here to represent the scattering region for wave propagation. The evaluation of the improper double integrals in the complex plane furnishes our desired Green’s functions. The applied technique allows us to obtain all of the possible Green’s functions by using Somerfield radiation condition. With the help of computational software package MATLAB, we have drawn the solution plot that can express the analogue of wave propagation features. By using the MATLAB software package, we have drawn the solution plot that can express the analogue of wave propagation features.

Cite this paper

Ali, M. S. , Bristy, S. M. , Asad, M. A. A. and Shahen, N. H. M. (2023). Spectral Analysis of the Derivation of Green’s Function of Helmholtz Integral Equation via Dirac-Delta Function and Cauchy Residual Approach. Open Access Library Journal, 10, e245. doi: http://dx.doi.org/10.4236/oalib.1110245.

References

[1]  Delkhosh, M., Delkhosh, M. and Jamali, M. (2012) Greens Function and Its Applications. Journal of Basic and Applied Scientific Research, 2, 8865-8876. https://doi.org/10.1155/2012/180806
[2]  Van Gijzen, M.B., Erlangga, Y.A. and Vuik, C. (2007) Spectral Analysis of the Discrete Helmholtz Operator Preconditioned with a Shifted Laplacian. SIAM Journal on Scientific Computing, 29, 1942-1958. https://doi.org/10.1137/060661491
[3]  Seybert, A.F. and Soenarko, B. (1988) Radiation and Scattering of Acoustic Waves from Bodies of Arbitrary Shape in a Three-Dimensional Half Space. Journal of Vibration Acoustics Stress and Reliability in Design, 110, 112-117. https://doi.org/10.1115/1.3269465
[4]  Seybert, A.F. and Wu, T.W. (1989) Modified Helmholtz Integral Equation for Bodies Sitting on an Infinite Plane. The Journal of the Acoustical Society of America, 85, 19-23. https://doi.org/10.1121/1.397716
[5]  Shankar, R. (1994) Renormalization-Group Approach to Interacting Fermions. Reviews of Modern Physics, 66, 129-191. https://doi.org/10.1103/RevModPhys.66.129
[6]  Wang, Z., Gerstein, M. and Snyder, M. (2009) RNA-Seq: A Revolutionary Tool for Transcriptomics. Nature Reviews Genetics, 10, 57-63. https://doi.org/10.1038/nrg2484
[7]  Wang, Z. and Fan, S. (2005) Optical Circulators in Two-Dimensional Magneto-Optical Photonic Crystals. Optics Letters, 30, 1989-1991. https://doi.org/10.1364/OL.30.001989
[8]  Fleury, R., Sounas, D.L., Sieck, C.F., Haberman, M.R. and Alù, A. (2014) Sound Isolation and Giant Linear Nonreciprocity in a Compact Acoustic Circulator. Science, 343, 516-519. https://doi.org/10.1126/science.1246957
[9]  Gazdag, J. (1978) Wave Equation Migration with the Phase-Shift Method. Geophysics, 43, 1342-1351. https://doi.org/10.1190/1.1440899
[10]  Brekhovskikh, L.M. and Godin, O.A. (1999) The Lateral Wave. In: Brekhovskikh, L.M. and Godin, O.A., Eds., Acoustics of Layered Media II, Springer, Berlin, 81-119. https://doi.org/10.1007/978-3-662-03889-5_3
[11]  Jensen, F.B. (2003) Nitrite Disrupts Multiple Physiological Functions in Aquatic Animals. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 135, 9-24. https://doi.org/10.1016/S1095-6433(02)00323-9
[12]  Lin, J., Rodríguez-Herrera, O.G., Kenny, F., Lara, D. and Dainty, J.C. (2012) Fast Vectorial Calculation of the Volumetric Focused Field Distribution by Using a Three-Dimensional Fourier Transform. Optics Express, 20, 1060-1069. https://doi.org/10.1364/OE.20.001060
[13]  Sheppard, C.J.R., Lin, J. and Kou, S.S. (2013) Rayleigh-Sommerfeld Diffraction Formula in k Space. JOSA A, 30, 1180-1183. https://doi.org/10.1364/JOSAA.30.001180
[14]  Kou, S.S., Sheppard, C.J.R. and Lin, J. (2013) Evaluation of the Rayleigh-Sommerfeld Diffraction Formula with 3D Convolution: The 3D Angular Spectrum (3D-AS) Method. Optics Letters, 38, 5296-5299. https://doi.org/10.1364/OL.38.005296
[15]  Sams, W.N. and Kouri, D.J. (1969) Noniterative Solutions of Integral Equations for Scattering. I. Single Channels. The Journal of Chemical Physics, 51, 4809-4814. https://doi.org/10.1063/1.1671871
[16]  Sams, W.N. and Kouri, D.J. (1970) Noniterative Solutions of Integral Equations for Scattering. IV. Preliminary Calculations for Coupled Open Channels and Coupled Eigenvalue Problems. The Journal of Chemical Physics, 53, 496-501. https://doi.org/10.1063/1.1674015
[17]  Kells, H.R. and Lear, S.A. (1960) Thermal Death Time Curve of Mycobacterium tuberculosis var. bovis in Artificially Infected Milk. Applied Microbiology, 8, 234-236. https://doi.org/10.1128/am.8.4.234-236.1960
[18]  Read, W.W. and Sneddon, G.E. (1995) Analytic Solutions for Solute Transport in Hillside Seepage. Proceedings 12th Australasian Fluid Mechanics Conference, Sydney, 10-15 December 1995, 191-194.
[19]  Khater, I. (2018) Analyse mathématique d’un modèle d’équation de réaction-diffusion à retard. Doctoral Dissertation, Depot institutionnel de l’Universite Abou Bekr Belkaid Tlemcen UABT.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413