全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Generalized Stability of the Quadratic Type λ-Functional Equation with 3k-Variables in Non-Archimedean Banach Space and Non-Archimedean Random Normed Space

DOI: 10.4236/oalib.1109821, PP. 1-21

Subject Areas: Mathematics

Keywords: Quadratic λ-Functional Equation, Non-Archimedean Normed Space, Non-Archimedean Banach Space, Fixed Point Method, Direct Method, Hyers-Ulam Stability, Random Normed Spaces, Non-Archimedean Random Normed Space

Full-Text   Cite this paper   Add to My Lib

Abstract

In this paper, we study to solve the quadratic type λ-functional equation with 3k variables. First, we investigated in non-Archimedean Banach spaces with a fixed point method, next, we investigated in non-Archimedean Banach spaces with a direct method and finally we do research in non-Archimedean random spaces. I will show that the solutions of the quadratic type λ-functional equation are quadratic type mappings. These are the main results of this paper.

Cite this paper

An, L. V. (2023). Generalized Stability of the Quadratic Type λ-Functional Equation with 3k-Variables in Non-Archimedean Banach Space and Non-Archimedean Random Normed Space. Open Access Library Journal, 10, e9821. doi: http://dx.doi.org/10.4236/oalib.1109821.

References

[1]  Ulam, S.M. (1960) A Collection of the Mathematical Problems. Interscience Publ., New York.
[2]  Hyers, D.H. (1941) On the Stability of the Linear Functional Equation. Proceedings of the National Academy of Sciences of the United States of America, 27, 222-224. https://doi.org/10.1073/pnas.27.4.222
[3]  Aoki, T. (1950) On the Stability of the Linear Transformation in Banach Spaces. Journal of the Mathematical Society of Japan, 2, 64-66. https://doi.org/10.2969/jmsj/00210064
[4]  Rassias, Th.M. (1978) On the Stability of the Linear Mapping in Banach Spaces. Proceedings of the AMS, 72, 297-300. https://doi.org/10.1090/S0002-9939-1978-0507327-1
[5]  Gajda, Z. (1991) On Stability of Additive Mappings. International Journal of Mathematics and Mathematical Sciences, 14, 431-434. https://doi.org/10.1155/S016117129100056X
[6]  Rassias, Th.M. and Semrl, P. (1993) On the Hyers-Ulam Stability of Linear Mappings. Journal of Mathematical Analysis and Applications, 173, 325-338. https://doi.org/10.1006/jmaa.1993.1070
[7]  Găvruta, P. (1994) A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings. Journal of Mathematical Analysis and Applications, 184, 431-443. https://doi.org/10.1006/jmaa.1994.1211
[8]  Skof, F. (1983) Propriet locali e approssimazione di operatori. Rend. Seminario Matematico e Fisico di Milano, 53, 113-129. https://doi.org/10.1007/BF02924890
[9]  Parka, C. and Kimb, S.O. (2017) Quadratic α-Functional Equations. International Journal of Nonlinear Analysis and Applications, 8, 1-9.
[10]  Moslehian, M.S. and Sadeghi, Gh. (2008) A Mazur-Ulam Theorem in Non-Archimedean Normed Spaces. Nonlinear Analysis, 69, 3405-3408. https://doi.org/10.1016/j.na.2007.09.023
[11]  Serstnev, A.N. (1963) On the Notion of a Random Normed Space. Doklady Akademii Nauk SSSR, 149, 280-283. (In Russian)
[12]  Schweizer, B. and Sklar, A. (1983) Probabilistic Metric Spaces. Elsevier, North Holland.
[13]  Diaz, J. and Margolis, B. (1968) A Fixed Point Theorem of the Alternative for Contractions on a Generalized Complete Metric Space. Bulletin of the AMS, 74, 305-309. https://doi.org/10.1090/S0002-9904-1968-11933-0
[14]  Mihet, D. and Radu, V. (2008) On the Stability of the Additive Cauchy Functional Equation in Random Normed Spaces. Journal of Mathematical Analysis and Applications, 343, 567-572. https://doi.org/10.1016/j.jmaa.2008.01.100
[15]  An, L.V. (2022) Generalized Hyers-Ulam-Rassias Type Stability Additive α-Functional Inequalities with 3k-Variable in Complex Banach Spaces. Open Access Library Journal, 9, e9373. https://doi.org/10.4236/oalib.1109373
[16]  Cădarui, L. and Radu, V. (2003) Fixed Points and the Stability of Jensen’s Functional Equation. Journal of Inequalities in Pure and Applied Mathematics, 4, Article No. 4.
[17]  Gilányi, A. (2002) Eine zur parallelogrammleichung äquivalente ungleichung. Aequations, 5, 707-710. https://doi.org/10.7153/mia-05-71
[18]  Alsina, C. (1987) On the Stability of a Functional Equation Arising in Probabilistic Normed Spaces. 5th International Conference on General Inequalities, Oberwolfach, 4-10 May 1986, 263-271. https://doi.org/10.1007/978-3-0348-7192-1_20
[19]  Chang, S.S., Rassias, J.M. and Saadati, R. (2010) The Stability of the Cubic Functional Equation in Intuitionistic Random Normed Spaces. Applied Mathematics and Mechanics, 31, 21-26. https://doi.org/10.1007/s10483-010-0103-6
[20]  Mirmostafaee, M., Mirzavaziri, M. and Moslehian, M.S. (2008) Fuzzy Stability of the Jensen Functional Equation. Fuzzy Sets and Systems, 159, 730-738. https://doi.org/10.1016/j.fss.2007.07.011
[21]  Mirzavaziri, M. and Moslehian, M.S. (2006) A Fixed Point Approach to Stability of a Quadratic Equation. Bulletin of the Brazilian Mathematical Society, 37, 361-376. https://doi.org/10.1007/s00574-006-0016-z
[22]  Mihet, D. (2009) The Probabilistic Stability for a Functional Equation in a Single Variable. Acta Mathematica Hungarica, 123, 249-256. https://doi.org/10.1007/s10474-008-8101-y
[23]  Mihet, D. (2009) The Fixed Point Method for Fuzzy Stability of the Jensen Functional Equation. Fuzzy Sets and Systems, 160, 1663-1667. https://doi.org/10.1016/j.fss.2008.06.014
[24]  Mirmostafaee, A.K. (2009) Stability of Quartic Mappings in Non-Archimedean Normed Spaces. Kyungpook Mathematical Journal, 49, 289-297. https://doi.org/10.5666/KMJ.2009.49.2.289
[25]  Mihet, D., Saadati, R. and Vaezpour, S.M. (2010) The Stability of the Quartic Functional Equation in Random Normed Spaces. Acta Applicandae Mathematicae, 110, 797-803. https://doi.org/10.1007/s10440-009-9476-7
[26]  Najati, A. and Moradlou, F. (2008) Hyers-Ulam-Rassias Stability of the Apollonius Type Quadratic Mapping in Non-Archimedean Spaces. Tamsui Oxford Journal of Mathematical Sciences, 24, 367-380.
[27]  Mihet, D., Saadati, R. and Vaezpour, S.M. (2011) The Stability of an Additive Functional Equation in Menger Probabilistic f-Normed Spaces. Mathematica Slovaca, 61, 817-826. https://doi.org/10.2478/s12175-011-0049-7
[28]  Baktash, E., Cho, Y., Jalili, M., Saadati, R. and Vaezpour, S.M. (2008) On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces. Journal of Inequalities and Applications, 2008, Article ID: 902187. https://doi.org/10.1155/2008/902187
[29]  Eshaghi Gordji, M., Zolfaghari, S., Rassias, J.M. and Savadkouhi, M.B. (2009) Solution and Stability of a Mixed Type Cubic and Quartic Functional Equation in Quasi-Banach Spaces. Abstract and Applied Analysis, 2009, Article ID: 417473. https://doi.org/10.1155/2009/417473
[30]  Saadati, R., Vaezpour, S.M. and Cho, Y. (2009) A Note on the “On the Stability of Cubic Mappings and Quadratic Mappings in Random Normed Spaces”. Journal of Inequalities and Applications, 2009, Article ID: 214530. https://doi.org/10.1155/2009/214530
[31]  Mohamadi, M., Cho, Y., Park, C., Vetro, P. and Saadati, R. (2010) Random Stability of an Additive-Quadratic-Quartic Functional Equation. Journal of Inequalities and Applications, 2010, Article ID: 754210. https://doi.org/10.1155/2010/754210
[32]  Van An, L. (2023) Establish an Additive (s;t)-Function in Equalities by Fixed Point Method and Direct Method with n-Variables in Banach Space. Journal of Mathematics, 7, 1-13. https://doi.org/10.53555/m.v9i1.5515
[33]  An, L.V. (2023) Generalized Stability of Functional Inequalities with 3k-Variables Associated for Jordan-von Neumann-Type Additive Functional Equation. Open Access Library Journal, 10, e9681. https://doi.org/10.4236/oalib.1109681
https://www.scirp.org/journal/paperinformation.aspx?paperid=122680

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133