全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Macronutrient Analysis of Soil and Leaf for Diagnosing the Nutritional Condition of Different Coconut (Cocos nucifera L.) Cultivars in Quintana Roo, Mexico

DOI: 10.4236/oalib.1109588, PP. 1-11

Subject Areas: Agricultural Engineering

Keywords: Nutrimental Conditions, Nutrient Availability, Optimal Fertilization, Macronutrient, Diagnosing

Full-Text   Cite this paper   Add to My Lib

Abstract

In Mexico, various strategic programs and technological management packages have been implemented to promote the coconut value chain. Those strategies are related to the introduction of new promising coconut germplasm. However, a successful genetic program is only possible if the nutritional conditions of the materials are properly known to support a fertilization strategy. The objective of this work was to diagnose the nutritional condition of soils and plants of different Coconut (Cocos nucifera L.) cultivars in Quintana Roo, Mexico. Six cultivars were studied in three locations: Xul-ha with Creole Colima Tall from the Mexican Pacific, Bacalar 1: with the Tagnanan Hybrid from Philippines, Bacalar 2-INIFAP with four ecotypes: Rotuma Tall (Fiji Oceania), Markham Valley Tall (Papua Nueva Guinea), Creole Michoacan Tall (Mexican Pacific) and Malayan Yellow Dwarf (Malaysia). Soil and foliar samples were taken and analyzed for Nitrogen (N), Phosphorus (P), Potassium (K), Calcium (Ca) and Magnesium (Mg). The content of N and P in all six cultivars were below the optimal level. It is assumed that N and P deficiencies are related to low N and P contents in the soils. P deficiencies were found in all cultivars due to its low soil availability. At high pH values, the available form (H2PO4-) can precipitate by reacting with calcium (Ca2 ) or magnesium (Mg2 ) to form slightly soluble phosphates. All soils showed K contents in excess but the "Tagnanan Hybrid" of Bacalar 1 showed deficiencies; may be related to the extremely high Mg. The Ca in leaves of the six cultivars were above the optimal level as consequence of its very high concentration in the soils. Even though, all soils had Mg levels ranging from optimal to excess, five of the six cultivars showed Mg deficiencies, excepting the "Tagnanan Hybrid" of Bacalar 1 with the highest excess levels of Mg in the soil.

Cite this paper

Silverio-Gómez, M. D. C. , Ramírez-Silva, J. H. , Cortazar-Rios, M. , Sosa-Rubio, E. E. and Herrera-Cool, G. J. (2022). Macronutrient Analysis of Soil and Leaf for Diagnosing the Nutritional Condition of Different Coconut (Cocos nucifera L.) Cultivars in Quintana Roo, Mexico. Open Access Library Journal, 9, e9588. doi: http://dx.doi.org/10.4236/oalib.1109588.

References

[1]  FAO (2018) Food and Agriculture Organization of the United Nation.
[2]  TROPICSAFE (2020) Programa de Investigación e innovación de la Unión Europea H2020.
[3]  Jayasekhar, S. and Chandran, K.P. (2021) World Economic Importance. In: The Coconut Genome, Springer, Cham, 1-12. https://doi.org/10.1007/978-3-030-76649-8_1
[4]  Oropeza, C. (2015) El panorama mundial de la industria de cocotero. En: Cámara de diputados, 2015. http://www3.diputados.gob.mx
[5]  Bourdeix, R. and Koelau, D.F. (2021) Replanting Projects and Relevant Beneficiaries. Coconut Risk Management and Mitigation Manual for the Pacific Region, 101.
[6]  SAGARPA (2017) Planeación Agrícola Nacional 2017-1030. Palma de Coco Mexicana. 6.
[7]  SIAP. (2015). Anuario estadístico de la producción agrícola. Servicio de Información Agroalimentaria y Pesquera (SIAP) de la SAGARPA.
[8]  Brito, D.R., Pinto-Zevallos, D.M., de Sena Filho, J.G., Coelho, C.R., Nogueira, P.C., de Carvalho, H.W. and Teodoro, A.V. (2021) Bioactivity of the Essential Oil from Sweet Orange Leaves against the Coconut Mite Aceria guerreronis (Acari: Eriophyidae) and Selectivity to a Generalist Predator. Crop Protection, 148, Article ID: 105737. https://doi.org/10.1016/j.cropro.2021.105737
[9]  Gurr, G.M., Johnson, A.C., Ash, G.J., Wilson, B.A., Ero, M.M., Pilotti, C.A., Dewhurst, C.F. and You, M.S. (2016) Coconut Lethal Yellowing Diseases: A Phytoplasma Threat to Palms of Global Economic and Social Significance. Frontiers in Plant Science, 7, Article No. 1521. https://doi.org/10.3389/fpls.2016.01521
[10]  Batugal, P. (2005) Coconut Genetic Resources. Bioversity International.
[11]  Ramírez-Silva, J.H., Aguilar-Duarte, Y., Ramírez-Jaramillo, G., Oropeza Salín, C. and Cano González, A. (2018) Materia orgánica y nitrógeno asimilable en suelos dedicados a cocotero en el estado de Guerrero, México. Revista del centro de graduados e investigación, 33, 116-122.
[12]  Cortázar, M. (2011) Programa Estratégico para el Desarrollo Rural Sustentable de la Región Sur-Sureste de México: Trópico Húmedo 2011. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, 2, 1-10.
[13]  Ordáz, E.O. and Zamora, O.P. (1998) Comportamiento de la palma de coco en cinco sistemas de producción del estado de Colima, México. Terra latinoamericana, 16, 259-267. http://www.redalyc.org/articulo.oa?id=57316309
[14]  Mahindapala, R. (1981) Fifty Years of Coconut Research. Tropical Agriculturist, 137, 89-95.
[15]  Rocha-Matías, S.S., Freire de Aquino, B. and Duarte de Freitas, J.A. (2008) Evaluation of the Coconut Palm (Cocos nucifera) Production in Function of Rates of Nitrogen and Potassium Applied via Fertigation. Agronomía Colombiana, 26, 12-133.
[16]  SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2002) Norma Oficial Mexicana NOM-021-RECNAT-2000, que establece las especificaciones de fertilidad, salinidad y clasificación de suelos, estudios, muestreo y análisis. Secretaria de Medio Ambiente y Recursos Naturales, Diario official. http://www.ordenjuridico.gob.mx/Documentos/Federal/wo69255.pdf
[17]  Phytomonitor (2018) Archivo de análisis de fertilidad de suelos-2020 del laboratorio Phytomonitor. Calzada Aeropuerto N° 7299-B. Colonia Bachigualato. Culiacán Sinaloa, México, CP. 80140.
[18]  Sobral, L.F. (1998) Nutrição e adubação do coqueiro. In: Ferreira, J.M.S., Warwich, D.R.N. and Siqueira, L.A., Eds., A cultura do coqueiro no Brasil, 2nd Edition, EMBRAPA-SPI, Brasilia, 129-157.
[19]  Magat, S.S. (1991) Fertilizer Recommendations for Coconut Based on Soil and Leaf Analyses. Philippine Journal of Coconut Studies, 16, 25-29.
[20]  Sanguino Soto, L.E. (1961) Influencia del pH sobre la fijación de fósforo y su relación con la respuesta del maíz a la fertilización fosfatada. Acta Agronómica, 11, 3-4.
[21]  Fernández, M.T. (2007) Fósforo: Amigo o enemigo. Sobre los derivados de la Caña de Azucar. Instituto Cubano de Investigación de los derivados de la Caña de Azucar (ICIDCA), Vol. XLI, Núm. 2, 51-57.
[22]  Doll, E.C. and Lucas, R.E. (1973) Testing Soils for Potassium, Calcium and Magesium. In: Walsh, L.M. and Beaton, J.D., Eds., Soil Testing and Plant Analysis, Soil Science Society of America Inc., Madison, 133-151.
[23]  Kueklang, M., Krisanapook, K., Havananda, T., Phavaphutanon, L. and Luengwilai, K. (2021) Seasonal Variation of Fruit Yield and Leaf Macronutrient Concentrations of Thai Aromatic Coconut. Agriculture and Natural Resources, 55, 858-866. https://doi.org/10.34044/j.anres.2021.55.5.16
[24]  Ramirez Silva, J.H., Cano Gonzalez, A., Aguilar Duarte, Y., Ramirez Jaramillo, G. and Loeza Deloya, V.M. (2014) Comportamiento del Fósforo en Suelos Mecanizables dedicados a Maíz en el estado de Quintana Roo, México. XXVI Reunión Científica Tecnológica, Forestal y Agropecuaria Tabasco 2014, 55.
[25]  Krisanapook, K., Imsabai, W., Boonruangrod, R., Phavaphutanon, L. and Havananda, T. (2019) Young Coconut Production under Climate Variation Scenarios. Final Report, Thailand Research Fund (TRF), Bangkok.
[26]  Somasiri, L.L.W. (1997) The Interaction between Potassium and Magnesium in Red Yellow Podzolic Soils with Laterite and Its Effect on Nutrition of Coconut Palm (Cocos nucifera L). Cocos, 12, 18-32. https://doi.org/10.4038/cocos.v12i0.2162

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413