全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Double Folding Potential and the Deuteron-Nucleus Inelastic Scattering in the Optical Model Framework

DOI: 10.4236/oalib.1109550, PP. 1-16

Subject Areas: Modern Physics

Keywords: Effective Interaction, DWBA, DWUCK4, Double Folding Model, Optical Potential, Woods-Saxon Form Factor

Full-Text   Cite this paper   Add to My Lib

Abstract

The observed angular distribution data of deuteron elastic and inelastic scattering from 58Ni at 170 MeV, 70,72Ge, 90Zr, 116Sn at 171 MeV and 208Pb at 86 MeV are analyzed within the optical model framework. The real and imaginary parts of the optical potentials were calculated using the double folding procedure with a B3Y-Fetal effective interaction. The obtained potentials are fitted with appropriate Woods-Saxon form factors and introduced into the DWUCK4 code to calculate the inelastic scattering cross sections. The calculated cross-sections are found to be in good agreement with experimental data. A satisfactory fit of the angular distribution data of the theoretical calculation to experimental data was achieved in both the elastic and inelastic channels.

Cite this paper

Abenga, R. C. , Ibrahim, Y. Y. and Adamu, I. D. (2023). Double Folding Potential and the Deuteron-Nucleus Inelastic Scattering in the Optical Model Framework. Open Access Library Journal, 10, e9550. doi: http://dx.doi.org/10.4236/oalib.1109550.

References

[1]  El-Hammamy, M.N. (2015) Double Folding Analysis of 3H Elastic and Inelastic Scattering to Low Lying States on 90Zr, 116Sn and 208Pb at 270 MeV. Chinese Physics C, 39, Article ID: 034101. https://doi.org/10.1088/1674-1137/39/3/034101
[2]  Amer, A.H., Penionzhkevich, Y.E., Ibraheem, A.A. and Hamada, S. (2020) Comparison between the Elastic Scattering of 12C(α, α)12C and 12C(6He, 6He)12C Different Nuclear Potentials. International Journal of Modern Physics E, 29, Article ID: 2050086. https://doi.org/10.1142/S021830132050086X
[3]  Farid, M.E. and Hassanain, M.A. (2004) Folding Model and Coupled-Channels Analysis of 6,7Li Elastic and Inelastic Scattering. The European Physical Journal A, 19, 231-236. https://doi.org/10.1140/epja/i2003-10122-3
[4]  Amer, A.H., Amar, A., Hamada, S. and Bondouk, I.I. (2016) Optical and Double Folding Model Analysis for Alpha Particles Elastically Scattered from 9Be and 11B Nuclei at Different Energies. World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering, 10, 161-166.
[5]  Hamada, S., Burtebayev, N., Amangeldi, N. and Amar, A. (2011) Detailed Phenomenological Study of 14N Elastically Scattered on 12C in a Wide Energy Range. World Academy of Science, Engineering and Technology, International Journal of Chemical and Molecular Engineering, 5, 110-112.
[6]  Sert, Y., Yegin, R. and Dogan, H. (2015) A Theoretical Investigation of 9Be 27Al Reaction: Phenomenological and Microscopic Model Approximation. Indian Journal of Physics, 89, 1093-1100. https://doi.org/10.1007/s12648-015-0685-9
[7]  Perey, C.M. and Perey, F.G. (1974) Compilation of Phenomenological Optical-Model Parameters 1969-1972. Atomic Data and Nuclear Data Tables, 13, 293-337. https://doi.org/10.1016/0092-640X(74)90005-9
[8]  Farid, M.E., Mahmoud, Z.M.M. and Hassan, G.S. (2001) Analysis of Heavy Ions Elastic Scattering Using the Double Folding Cluster Model. Nuclear Physics A, 691, 671-690. https://doi.org/10.1016/S0375-9474(01)00587-5
[9]  Farid, M.E. (2001) Double Folding Cluster Optical Potential of Heavy Ions Interaction. 3rd Conference on Nuclear & Particle Physics (NUPPAC 01), Cairo, 20-24 October 2001, 217-222. https://doi.org/10.1007/s13538-015-0354-7
[10]  Paulo, S., Hassanain, M.A. and Ibraheem, A.A. (2015) Study of the Elastic Scattering of 32S by 24Mg at Low Energies. Brazilian Journal of Physics, 45, 699-707.
[11]  Satchler, G.R. (1983) Direct Nuclear Reactions. Oxford University Press, Oxford.
[12]  Behairy, K., Mahmoud, Z.M.M. and Hassanain, M.A. (2015) Elastic and Inelastic α-Scatterings from 58Ni, 116Sn, and 208Pb Targets at 288, 340, 480, and 699 MeV. Brazilian Journal of Physics, 45, 673-686. https://doi.org/10.1007/s13538-015-0351-x
[13]  Farid, M.E., Alsagheer, L., Alharbi, W.R. and Ibraheem, A.A. (2014) Analysis of Deuteron Elastic Scattering in the Framework of the Double Folding Optical Potential Model. Life Science Journal, 11, 208-216.
[14]  Attia, A., El-Akkad, F.A., Nasr, M., El-Nohy, N. and Abdel-Moneim, A.M. (2010) Form Factor Calculation for (16O 16O), (12C 12C) and (12C 24Mg) at Intermediate Energies. 10th Radiation Physics & Protection Conference, Cairo, 27-30 November 2010, 381-390.
[15]  El-Attar, A.L., Farid, M.E. and El-Aref, M.G. (2008) Optical Model Analyses of Deuteron Inelastic Scattering. 9th International Conference for Nuclear Sciences and Applications, Sharm Al Sheikh, 11-14 February 2008, 1239.
[16]  Ibraheem, A.A. (2016) Analysis of Deuteron-Nucleus Scattering Using Sao Paulo Potential. Brazilian Journal of Physics, 46, 746-753. https://doi.org/10.1007/s13538-016-0453-0
[17]  Hagino, K., Takehi, T. and Takigawa, N. (2006) No-Recoil Approximation to the Knock-On Exchange Potential in the Double Folding Model for Heavy-Ion Collisions. Physical Review C—Nuclear Physics, 74, Article ID: 037601. https://doi.org/10.1103/PhysRevC.74.037601
[18]  Satchler, G.R. and Love, W.G. (1979) Folding Model Potentials from Realistic Interactions for Heavy-Ion Scattering. Phys. Reports (Review Section of Physics Letters), 55, 183-254. https://doi.org/10.1016/0370-1573(79)90081-4
[19]  Brandan, M.E. and Satchler, G.R. (1997) The Interaction between Light Heavy-Ions and What It Tells Us. Physics Reports, 285, 143-243. https://doi.org/10.1016/S0370-1573(96)00048-8
[20]  Fiase, J.O., Devan, K.R.S. and Hosaka, A. (2002) Mass Dependence of M3Y-Type Interactions and the Effects of Tensor Correlations. Physical Review C—Nuclear Physics, 66, Article ID: 014004. https://doi.org/10.1103/PhysRevC.66.014004
[21]  Ochala, I. and Fiase, J.O. (2018) Symmetric Nuclear Matter Calculations: A Variational Approach. Physical Review C, 98, Article ID: 064001. https://doi.org/10.1103/PhysRevC.98.064001
[22]  Abenga, R.C., Fiase, J.O. and Ibeh, G.J. (2020) Optical Model Analysis of α 40Ca at Elab = 104 and 141.7 MeV Using a Mass-Dependent M3Y-Type Effective Interaction. Nigerian Annals of Pure and Applied Sciences, 3, 252-260. https://doi.org/10.46912/napas.144
[23]  Abenga, R.C., Yahaya, Y.I. and Adamu, I.D. (2021) Double Folding Potential of Deuteron Elastic Scattering on Target Nuclei in the Mass Range of 50 ≤ A ≤ 208 Using a Mass-Dependent Effective Interaction. Bayero Journal of Physics and Mathematical Science, 1, 1-14.
[24]  Modarres, M. and Rahmat, M. (2015) The LOCV Averaged Two-Nucleon Interactions versus the Density-Dependent M3Y Potential for the Heavy-Ion Collisions. Nuclear Physics A, 934, 148-166. https://doi.org/10.1016/j.nuclphysa.2014.11.006
[25]  Satchler, G.R. (1994) A Simple Effective Interaction for Peripheral Heavy-Ion Collisions at Intermediate Energies. Nuclear Physics A, 579, 241-255. https://doi.org/10.1016/0375-9474(94)90804-4
[26]  De Vries, H., De Jager, C.W. and De Vries, C. (1987) Charge-Density-Distribution Parameters from Elastic Electron Scattering. Atomic Data and Nuclear Data Tables, 36, 495-536. https://doi.org/10.1016/0092-640X(87)90013-1
[27]  Seif, W.M. (2011) Nuclear Matter Equation of State Using Density-Dependent M3Y Nucleon-Nucleon Interactions. Journal of Physics G: Nuclear and Particle Physics, 38, Article ID: 035102. https://doi.org/10.1088/0954-3899/38/3/035102
[28]  Khoa, D.T., Von Oertzen, W. and Ogloblin, A.A. (1996) Study of the Equation of State for Asymmetric Nuclear Matter and Interaction Potential between Neutron-Rich Nuclei Using the Density-Dependent M3Y Interaction. Nuclear Physics A, 602, 98-132. https://doi.org/10.1016/0375-9474(96)00091-7
[29]  Khoa, D.T. and Von Oertzen, W. (1993) A Nuclear Matter Study Using the Density Dependent M3Y Interaction. Physics Letters B, 304, 8-16. https://doi.org/10.1016/0370-2693(93)91391-Y
[30]  Moharram, S.A. and El-Shal, A.O. (2002) Spin Polarized Cold and Hot Dense Neutron Matter. Turkish Journal of Physics, 26, 167-177.
[31]  Hanna, K.M., Lukyanov, K.V., Lukyanov, V.K., Metawei, Z., Slowinski, B. and Zemlyanaya, E.V. (2005) Excitation of Nuclear Collective Semi-Microscopic Optical Potential. 5th Conference on Nuclear and Particle Physics, Cairo, 19-23 No-vember 2005, 155-164.
[32]  Khalaf, A.M., Khalifa, M.M., Solieman, A.H.M. and Comsan, M.N.H. (2017) Nuclear Matter Parameters and Optical Model Analysis of Proton Elastic Scattering on the Doubly Magic Nucleus 40Ca. Nuclear Physics A, 939, 83-93. https://doi.org/10.1016/j.nuclphysa.2017.09.009
[33]  An, H. and Cai, C. (2006) Global Deuteron Optical Model Potential for the Energy Range Up to 183 MeV. Physical Review C—Nuclear Physics, 73, Article ID: 054605. https://doi.org/10.1103/PhysRevC.73.054605
[34]  Clark, H.L., Lui, Y.W. and Youngblood, D.H. (1998) Folding Model Analysis of the Excitation of Low-Lying States and the High Energy Octupole Resonance in 116Sn by 240 MeV α Scattering. Physical Review C, 57, 2887-2891. https://doi.org/10.1103/PhysRevC.57.2887
[35]  Karpov, A.V., et al. (2017) NRV Web Knowledge Base on Low-Energy Nuclear Physics. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 859, 112-124. https://doi.org/10.1016/j.nima.2017.01.069
[36]  Langanke, K., Maruhn, J.A. and Koonin, S.E. (1993) Computational Nuclear Physics 2. Nuclear Reactions. Springer-Verlag, Berlin. https://doi.org/10.1007/978-1-4613-9335-1
[37]  Karpov, A.V. and Saiko, V.V. (2017) Modeling Near-Barrier Collisions of Heavy Ions Based on a Langevin-Type Approach. Physical Review C, 96, Article ID: 024618. https://doi.org/10.1103/PhysRevC.96.024618
[38]  Denisov, V.Y. and Davidovskaya, O.I. (2010) Elastic Scattering of Heavy Ions and Nucleus-Nucleus Potential with a Repulsive Core. Bulletin of the Russian Academy of Sciences: Physics, 74, 572-576. https://doi.org/10.3103/S1062873810040325
[39]  Zagrebaev, V., Denikin, A. and Alekseev, A. (2000) Optical Model of Elastic Scattering. Nuclear Reaction Video Project. http://nrv.jinr.ru/nrv
[40]  Morsch, H.P., Sukosd, C., Rogge, M., Turek, P. and Machner, H. (1980) Giant Monopole and Quadrupole Resonances and Other Multipole Excitations in 208Pb Studied in 43 MeV/Nucleon Alpha-Particle and Deuteron Scattering. Physical Review C, 22, 489-500. https://doi.org/10.1103/PhysRevC.22.489
[41]  Bäumer, C., et al. (2001) Deuteron Elastic and Inelastic Scattering from 12C, 24Mg, and 58Ni at 170 MeV. Physical Review C—Nuclear Physics, 63, 376011-376014. https://doi.org/10.1103/PhysRevC.63.037601
[42]  Korff, A., et al. (2004) Deuteron Elastic and Inelastic Scattering at Intermediate Energies from Nuclei in the Mass Range 6 ≤ A ≤ 116. Physical Review C, 70, Article ID: 067601.
[43]  Zagrebaev, V., Denikin, A. and Alekseev, A. (2009) DWBA for Inelastic Reactions. Nuclear Reaction Video Project. http://nrv.jinr.ru/nrv

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413