全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Physiological and Pharmaceutical Aspects of the Orthodontic Tooth Movement

DOI: 10.4236/oalib.1109354, PP. 1-14

Subject Areas: Dentistry

Keywords: Tooth Movement

Full-Text   Cite this paper   Add to My Lib

Abstract

The purpose of this paper was to review the various medications that can influence the required orthodontic tooth movement. The circulation can carry molecules from medications and foods that patients regularly consume to mechanically stressed parenchymal tissues, where they can interact with nearby target cells. Mechanical forces, induced by orthodontic treatment, may have an inhibitory, additive, or synergistic effect when combined with one or more of these substances. The literature search led to several scientific works that were selected on the basis of their relevance in order to extract the data. The results found were presented according to each type of molecule that is mostly found in medical prescriptions. In conclusion, the dental displacement caused by orthodontic appliances may be as well compromised as favoured by the medication taken by the patient during his orthodontic treatment.

Cite this paper

Khamlich, K. , Bouchghel, L. , Bourzgui, F. and Quars, F. E. (2023). The Physiological and Pharmaceutical Aspects of the Orthodontic Tooth Movement. Open Access Library Journal, 10, e9354. doi: http://dx.doi.org/10.4236/oalib.1109354.

References

[1]  Corrêa, A.S., de Almeida, V.L., Lope, B.M.V., et al. (2017) The Influence of Non-Steroidal Anti-Inflammatory Drugs and Paracetamol Used for Pain Control of Orthodontic Tooth Movement: A Systematic Review. Anais da Academia Brasileira de Ciências, 89, 2851-2863. https://doi.org/10.1590/0001-3765201720160865
[2]  Krishnan, V., Zahrowski, J.J. and Davidovitch, Z. (2015) The Effect of Drugs and Diet on Orthodontic Tooth Movement. In: Krishnan, V. and Davidovitch, Z., Eds., Biological Mechanisms of Tooth Movement, 2nd Edition, Wiley-Blackwell, Hoboken, 173-187. https://doi.org/10.1002/9781118916148.ch13
[3]  Knop, L.A.H., Shintcovsk, R.L., Retamoso, L.B., Ribeiro, J.S. and Tanaka, O.M. (2012) Non-Steroidal and Steroidal Anti-Inflammatory Use in the Context of Orthodontic Movement. European Journal of Orthodontics, 34, 531-535. https://doi.org/10.1093/ejo/cjq173
[4]  Kantarci, A., Will, L. and Yen, S., Eds. (2016) Tooth Movement. Front Oral Biol. Basel, Karger, Vol. 18, 46-55. https://doi.org/10.1159/000351899
[5]  Kantarci, A., Will, L. and Yen, S., Eds. (2016) Tooth Movement. Front Oral Biol. Basel, Karger, Vol. 18, 75-79. https://doi.org/10.1159/000351901
[6]  Rody Jr., W.J., King, G.J. and Gu, G. (2001) Osteoclast Recruitment to Sites of Compression in Orthodontic Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics, 120, 477-489. https://doi.org/10.1067/mod.2001.118623
[7]  Yokoya, K., Sasaki, T. and Shibasaki, Y. (1997) Distributional Changes of Osteoclasts and Pre-osteoclastic Cells in Periodontal Tissues during Experimental Tooth Movement as Revealed by Quantitative Immunohistochemistry of H -ATPase. Journal of Dental Research, 76, 580-587. https://doi.org/10.1177/00220345970760010901
[8]  Kawarizadeh, A., Bourauel, C., Zhang, D., Götz, W. and Jöger, A. (2004) Correlation of Stress and Strain Profiles and the Distribution of Osteoclastic Cells Induced by Orthodontic Loading in Rat. European Journal of Oral Sciences, 112, 140-147. https://doi.org/10.1111/j.1600-0722.2004.00116.x
[9]  Alhashimi, N., Frithiof, L., Brudvik, P. and Bakhiet, M. (2001) Orthodontic Tooth Movement and de Novo Synthesis of Proinflammatory Cytokines. American Journal of Orthodontics and Dentofacial Orthopedics, 119, 307-312. https://doi.org/10.1067/mod.2001.110809
[10]  Lee, B. (2007) Force and Tooth Movement. Australian Orthodontic Journal, 23, 155.
[11]  King, G.J., Keeling, S.D. and Wronski, T.J. (1991) Histomorphometric Study of Alveolar Bone Turnover in Orthodontic Tooth Movement. Bone, 12, 401-409. https://doi.org/10.1016/8756-3282(91)90029-I
[12]  Noxon, S.J., King, G.J., Gu, G. and Huang, G. (2001) Osteoclast Clearance from Periodontal Tissues during Orthodontic Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics, 120, 466-476. https://doi.org/10.1067/mod.2001.117912
[13]  Cowin, S.C., Moss-Salentijn, L. and Moss, M.L. (1991) Candidates for the Mechanosensory System in Bone. Journal of Biomechanical Engineering, 113, 191-197. https://doi.org/10.1115/1.2891234
[14]  Hamaya, M., Mizoguchi, I., Sakakura, Y., Yajima, T. and Abiko, Y. (2002) Cell Death of Osteocytes Occurs in Rat Alveolar Bone during Experimental Tooth Movement. Calcified Tissue International, 70, 117-126. https://doi.org/10.1007/s002230010021
[15]  van’t Hof, R.J. and Ralston, S.H. (2001) Nitric Oxide and Bone. Immunology, 103, 255-261. https://doi.org/10.1046/j.1365-2567.2001.01261.x
[16]  Fox, S.W., Chambers, T.J. and Chow, J.W. (1996) Nitric Oxide Is an Early Mediator of the Increase in Bone Formation by Mechanical Stimulation. American Journal of Physiology-Endocrinology and Metabolism, 270, E955-E960. https://doi.org/10.1152/ajpendo.1996.270.6.E955
[17]  van’t Hof, R.J., Armour, K.J., Smith, L.M., Armour, K.E., Wei, X.Q., Liew, F.Y. and Ralston, S.H. (2000) Requirement of the Inducible Nitric Oxide Synthase Pathway for IL-1-Induced Osteoclastic Bone Resorption. Proceedings of the National Academy of Sciences of the United States of America, 97, 7993-7998. https://doi.org/10.1073/pnas.130511497
[18]  Tan, S.D., Kuijpers-Jagtman, A.M., Semeins, C.M., Bronckers, A.L., Maltha, J.C., Von den Hoff, J.W., Everts, V. and Klein-Nulend, J. (2006) Fluid Shear Stress Inhibits TNFα-induced Osteocyte Apoptosis. Journal of Dental Research, 85, 905-909. https://doi.org/10.1177/154405910608501006
[19]  Tan, S.D., Bakker, A.D., Semeins, C.M., Kuijpers-Jagtman, A.M. and Klein-Nulend, J. (2008) Inhibition of Osteocyte Apoptosis by Fluid Flow Is Mediated by Nitric Oxide. Biochemical and Biophysical Research Communications, 369, 1150-1154. https://doi.org/10.1016/j.bbrc.2008.03.007
[20]  Collin-Osdoby, P., Rothe, L., Bekker, S., Anderson, F. and Osdoby, P. (2000) Decreased Nitric Oxide Levels Stimulate Osteoclastogenesis and Bone Resorption Both in Vitro and in Vivo on the Chick Chorioallantoic Membrane in Association with Neoangiogenesis. Journal of Bone and Mineral Research, 15, 474-488. https://doi.org/10.1359/jbmr.2000.15.3.474
[21]  Tan, S.D., de Vries, T.J., Kuijpers-Jagtman, A.M., Semeins, C.M., Everts, V. and Klein-Nulend, J. (2007) Osteocytes Subjected to Fluid Flow Inhibit Osteoclast Formation and Bone Resorption. Bone, 41, 745-751. https://doi.org/10.1016/j.bone.2007.07.019
[22]  Tan, S.D., Xie, R., Klein-Nulend, J., van Rheden, R.E., Bronckers, A.L., Kuijpers-Jagtman, A.M., Von den Hoff, J.W. and Maltha, J.C. (2009) Orthodontic Force Stimulates eNOS and iNOS in Rat Osteocytes. Journal of Dental Research, 88, 255-260. https://doi.org/10.1177/0022034508330861
[23]  Brady, T.A., Piesco, N.P., Buckley, M.J., Langkamp, H.H., Bowen, L.L. and Agarwal, S. (1998) Autoregulation of Periodontal Ligament Cell Phenotype and Functions by Transforming Growth Factor-β1. Journal of Dental Research, 77, 1779-1790. https://doi.org/10.1177/00220345980770100501
[24]  Domon, S., Shimokawa, H., Yamaguchi, S. and Soma, K. (2001) Temporal and Spatial mRNA Expression of Bone Sialoprotein and Type I Collagen during Rodent Tooth Movement. European Journal of Orthodontics, 23, 339-348. https://doi.org/10.1093/ejo/23.4.339
[25]  Mitsui, N., Suzuki, N., Maeno, M., Yanagisawa, M., Koyama, Y., Otsuka, K. and Shimizu, N. (2006) Optimal Compressive Force Induces Bone Formation via Increasing Bone Morphogenetic Proteins Production and Decreasing Their Antagonists Production by Saos-2 Cells. Life Sciences, 78, 2697-2706. https://doi.org/10.1016/j.lfs.2005.10.024
[26]  Guajardo, G., Okamoto, Y., Gogen, H., Shanfeld, J.L., Dobeck, J., Herring, A.H. and Davidovitch, Z. (2000) Immunohistochemical Localization of Epidermal Growth Factor in Cat Paradental Tissues during Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics, 118, 210-219. https://doi.org/10.1067/mod.2000.104097
[27]  Wescott, D.C., Pinkerton, M.N., Gaffey, B.J., Beggs, K.T., Milne, T.J. and Meikle, M.C. (2007) Osteogenic Gene Expression by Human Periodontal Ligament Cells under Cyclic Tension. Journal of Dental Research, 86, 1212-1216. https://doi.org/10.1177/154405910708601214
[28]  Makrygiannakis, M.A., Kaklamanos, E.G. and Athanasiou, A.E. (2019) Does Long-Term Use of Pain Relievers Have an Impact on the Rate of Orthodontic Tooth Movement? A Systematic Review of Animal Studies. European Journal of Orthodontics, 41, 468-477. https://doi.org/10.1093/ejo/cjy079
[29]  Bartzela, T., Türp, J.C., Motschall, E. and Maltha, J.C. (2009) Medication Effects on the Rate of Orthodontic Tooth Movement: A Systematic Literature Review. American Journal of Orthodontics and Dentofacial Orthopedics, 135, 16-26. https://doi.org/10.1016/j.ajodo.2008.08.016
[30]  Henneman, S., Von den Hoff, J.W. and Maltha, J.C. (2008) Mechanobiology of Tooth Movement. European Journal of Orthodontics, 30, 299-306. https://doi.org/10.1093/ejo/cjn020
[31]  Aisa, M.C., Datti, A., Orlacchio, A. and Di Renzo, G.C. (2018) Cox Inhibitors and Bone: A Safer Impact on Osteoblasts by NO-Releasing NSAIDs. Life Sciences, 208, 10-19. https://doi.org/10.1016/j.lfs.2018.07.011
[32]  Smith, W.L., DeWitt, D.L. and Garavito, R.M. (2000) Cyclooxygenases: Structural, Cellular, and Molecular Biology. Annual Review of Biochemistry, 69, 145-182. https://doi.org/10.1146/annurev.biochem.69.1.145
[33]  Kyrkanides, S., O’Banion, M.K. and Subtelny, J.D. (2000) Nonsteroidal Anti-Inflammatory Drugs in Orthodontic Tooth Movement: Metalloproteinase Activity and Collagen Synthesis by Endothelial Cells. American Journal of Orthodontics and Dentofacial Orthopedics, 118, 203-209. https://doi.org/10.1067/mod.2000.105872
[34]  Walker, J.B. and Buring, S.M. (2001) NSAID Impairment of Orthodontic Tooth Movement. The Annals of Pharmacotherapy, 35, 113-115. https://doi.org/10.1345/aph.10185
[35]  Hammad, S.M., El-Hawary, Y.M. and El-Hawary, A.K. (2012) The Use of Different Analgesics in Orthodontic Tooth Movements. The Angle Orthodontist, 82, 820-826. https://doi.org/10.2319/110911-691.1
[36]  García-Martínez, O., De Luna-Bertos, E., Ramos-Torrecillas, J., Manzano-Moreno, F.J. and Ruiz, C. (2015) Repercussions of NSAIDS Drugs on Bone Tissue: The Osteoblast. Life Sciences, 123, 72-77. https://doi.org/10.1016/j.lfs.2015.01.009
[37]  Salari, P. and Abdollahi, M. (2009) Controversial Effects of Non-Steroidal Anti-Inflammatory Drugs on Bone: A Review. Inflammation & Allergy—Drug Targets, 8, 169-175. https://doi.org/10.2174/187152809788681065
[38]  Aerssens, J., Boonen, S., Lowet, G. and Dequeker, J. (1998) Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for in Vivo Bone Research. Endocrinology, 139, 663-670. https://doi.org/10.1210/endo.139.2.5751
[39]  Pountos, I., Georgouli, T., Calori, G.M. and Giannoudis, P.V. (2012) Do Nonsteroidal Anti-Inflammatory Drugs Affect Bone Healing? A Critical Analysis. The Scientific World Journal, 2012, Article ID: 606404. https://doi.org/10.1100/2012/606404
[40]  Haruyama, N., Igarashi, K., Saeki, S., OtsukaIsoya, M., Shinoda, H. and Mitani, H. (2002) Estrous-Cycle-Dependent Variation in Orthodontic Tooth Movement. Journal of Dental Research, 81, 406-410. https://doi.org/10.1177/154405910208100610
[41]  Joint Formulary Committee (2017) British National Formulary 73. BMJ Publishing and the Royal Pharmaceutical Society, London.
[42]  Roche, J.J., Cisneros, G.J. and Acs, G. (1997) The Effect of Acetaminophen on Tooth Movement in Rabbits. The Angle Orthodontist, 67, 231-236.
[43]  Nilforoushan, D., Shirazi, M. and Dehpour, A.R. (2002) The Role of Opioid Systems on Orthodontic Tooth Movement in Cholestatic Rats. The Angle Orthodontist, 72, 476-480.
[44]  Smith, H.S., Raffa, R.B., Pergolizzi, J.V., Taylor, R. and Tallarida, R.J. (2014) Combining Opioid and Adrenergic Mechanisms for Chronic Pain. Postgraduate Medicine, 126, 98-114. https://doi.org/10.3810/pgm.2014.07.2788
[45]  Aghili, H., Moghadam, M.G., Yassaei, S., Fattahi Meybodi, A.R. and Ali Tabatabaei, S.M. (2013) Effect of Tramadol at Different Doses on Orthodontic Tooth Movement and Bone Resorption in Rats. Dental Research Journal, 10, 337-342.
[46]  Norevall, L.I., Forsgren, S. and Matsson, L. (1995) Expression of Neuropeptides (CGRP, Substance P) during and after Orthodontic Tooth Movement in the Rat. European Journal of Orthodontics, 17, 311-325. https://doi.org/10.1093/ejo/17.4.311
[47]  Minami, K., Yokoyama, T., Ogata, J. and Uezono, Y. (2011) The Tramadol Metabolite O-Desmethyl Tramadol Inhibits Substance P-Receptor Functions Expressed in Xenopus Oocytes. Journal of Pharmacological Sciences, 115, 421-424. https://doi.org/10.1254/jphs.10313SC
[48]  Buxton, I.L.O. and Benet, L.Z. (2011) Pharmacokinetics: The Dynamics of Drug Absorption, Distribution, Metabolism and Elimination. In: Brunton, L., Chabner, B.A. and Knollmann, B.C., Eds., Goodman and Gilman’s The Pharmacological Basis of Therapeutics, 12th Edition, McGraw Hill, New York, 17-40.
[49]  Kalia, S., Melsen, B. and Verna, C. (2004) Tissue Reaction to Orthodontic Tooth Movement in Acute and Chronic Corticosteroid Treatment. Orthodontics & Craniofacial Research, 7, 26-34. https://doi.org/10.1111/j.1601-6343.2004.00278.x
[50]  Sun, J., Du, J., Feng, W., et al. (2017) Histological Evidence That Metformin Reverses the Adverse Effects of Diabetes on Orthodontic Tooth Movement in Rats. Journal of Molecular Histology, 48, 73-81. https://doi.org/10.1007/s10735-016-9707-y
[51]  Arita, K., Hotokezaka, H., Hashimoto, M., et al. (2016) Effects of Diabetes on Tooth Movement and Root Resorption after Orthodontic Force Application in Rats. Orthodontics & Craniofacial Research, 19, 83-92. https://doi.org/10.1111/ocr.12117
[52]  Braga, S.M.G., de Albuquerque Taddei, S.R., Andrade Jr., I., et al. (2011) Effect of Diabetes on Orthodontic Tooth Movement in a Mouse Model. European Journal of Oral Science, 119, 7-14. https://doi.org/10.1111/j.1600-0722.2010.00793.x
[53]  Shirazi, M., Dehpour, A.R. and Jafari, F. (1999) The Effect of Thyroid Hormone on Orthodontic Tooth Movement in Rats. Journal of Clinical Pediatric Dentistry, 23, 259-264.
[54]  Soma, S., Iwamoto, M., Higuchi, Y. and Kurisu, K. (1999) Effects of Continuous Infusion of PTH on Experimental Tooth Movement in Rats. Journal of Bone and Mineral Research, 14, 546-554. https://doi.org/10.1359/jbmr.1999.14.4.546
[55]  Tyrovola, J.B. and Spyropoulos, M.N. (2001) Effects of Drugs and Systemic Factors on Orthodontic Treatment. Quintessence International, 32, 365-371.
[56]  Karsten, J. and Hellsing, E. (1997) Effect of Phenytoin on Periodontal Tissues Exposed to Orthodontic Force—An Experimental Study in Rats. British Journal of Orthodontics, 24, 209-215. https://doi.org/10.1093/ortho/24.3.209
[57]  Pithon, M.M. and de Oliveira Ruellas, A.C. (2008) Avalia??o clínica e radiográfica da influência do fenobarbital (Gardenal®) na movimenta??o ortodôntica: Estudo em coelhos. Revista Dental Press de Ortodontia e Ortopedia Facial, 13, 34-42. https://doi.org/10.1590/S1415-54192008000100005
[58]  Lee, R.H., Lyles, K.W. and Colón-Emeric, C. (2010) A Review of the Effect of Anticonvulsant Medications on Bone Mineral Density and Fracture Risk. American Journal of Geriatric Pharmacotherapy, 8, 34-46. https://doi.org/10.1016/j.amjopharm.2010.02.003
[59]  Frigotto, G.C.F., de Araujo, C.M., Guariza Filho, O., Tanaka, O.M., Johann, A.C.B.R. and Camargo, E.S. (2015) Effect of Fluoxetine on Induced Tooth Movement in Rats. American Journal of Orthodontics and Dentofacial Orthopedics, 148, 450-456. https://doi.org/10.1016/j.ajodo.2015.04.031
[60]  Mirhashemi, A.H., Akhoundi, M.S.A., Sheikhzadeh, S., et al. (2015) Effect of Fluoxetine Consumption on Orthodontic Tooth Movement in Rats. Journal of Dentistry, 12, 882-889.
[61]  Rafiei, M., Sadeghian, S., Torabinia, N. and Hajhashemi, V. (2015) Systemic Effects of Fluoxetine on the Amount of Tooth Movement, Root Resorption, and Alveolar Bone Remodeling During Orthodontic Force Application in Rat. Dental Research Journal, 12, 482-487. https://doi.org/10.4103/1735-3327.166232
[62]  Miresmaeili, A., Mollaei, N., Azar, R., Farhadian, N. and Kashani, K.M. (2015) Effect of Dietary Vitamin C on Orthodontic Tooth Movement in Rats. Journal of Dentistry, 12, 409-413.
[63]  Le Nihouannen, D., Barralet, J.E., Fong, J.E. and Komarova, S.V. (2010) Ascorbic Acid Accelerates Osteoclast Formation and Death. Bone, 46, 1336-1343. https://doi.org/10.1016/j.bone.2009.11.021
[64]  Collins, M.K. and Sinclair, P.M. (1988) The Local Use of Vitamin D to Increase the Rate of Orthodontic Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics, 94, 278-284. https://doi.org/10.1016/0889-5406(88)90052-2
[65]  Kale, S., Kocadereli, I., Atila, P. and Asan, E. (2004) Comparison of the Effects of 1,25 Dihydroxycholecalciferol and Prostaglandin E2 on Orthodontic Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics, 125, 607-614. https://doi.org/10.1016/j.ajodo.2003.06.002
[66]  Madan, M.S., Liu, Z.J., Gu, G.M. and King, G.J. (2007) Effects of Human Relaxin on Orthodontic Tooth Movement and Periodontal Ligaments in Rats. American Journal of Orthodontics and Dentofacial Orthopedics, 131, 8.e1-8.10. https://doi.org/10.1016/j.ajodo.2006.06.014
[67]  Hellsing, E. and Hammarström, L. (1991) The Effects of Pregnancy and Fluoride on Orthodontic Tooth Movements in Rats. European Journal of Orthodontics, 13, 223-230. https://doi.org/10.1093/ejo/13.3.223
[68]  De Albuquerque Taddei, S.R., Madeira, M.F., de Abreu Lima, I.L., et al. (2014) Effect of Lithothamnium sp and Calcium Supplements in Strain- and Infection-Induced Bone Resorption. The Angle Orthodontist, 84, 980-988. https://doi.org/10.2319/080313-579.1
[69]  Seifi, M., Hamedi, R. and Khavandegar, Z. (2015) The Effect of Thyroid Hormone, Prostaglandin E2, and Calcium Gluconate on Orthodontic Tooth Movement and Root Resorption in Rats. Journal of Dentistry, 16, 35-42.
[70]  Kirschneck, C., Meier, M., Bauer, K., Proff, P. and Fanghänel, J. (2017) Meloxicam Medication Reduces Orthodontically Induced Dental Root Resorption and Tooth Movement Velocity: A Combined in Vivo and in Vitro Study of Dental-Periodontal Cells and Tissue. Cell Tissue Research, 368, 61-78. https://doi.org/10.1007/s00441-016-2553-0
[71]  Akhoundi, M.S., Dehpour, A.R., Rashidpour, M., et al. (2010) The Effect of Morphine on Orthodontic Tooth Movement. Australian Orthodontic Journal, 26, 113-118.
[72]  Krishnan, S., Pandian, S. and Kumar, S.A. (2015) Effect of Bisphosphonates on Orthodontic Tooth Movement—An Update. Journal of Clinical and Diagnostic Research, 9, ZE01-ZE05. https://doi.org/10.7860/JCDR/2015/11162.5769
[73]  Zahrowski, J.J. (2011) Optimisation des traitements orthodontiques chez les patients sous biphosphonates [Optimizing Orthodontic Treatment in Patients Taking Bisphosphonates]. L’Orthodontie Française, 82, 279-298. (In French) https://doi.org/10.1051/orthodfr/20010032
[74]  Lotwala, R.B., Greenlee, G.M., Ott, S.M., Hall, S.H. and Huang, G.J. (2012) Bisphosphonates as a Risk Factor for Adverse Orthodontic Outcomes: A Retrospective Cohort Study. American Journal of Orthodontics and Dentofacial Orthopedics, 142, 625-634. https://doi.org/10.1016/j.ajodo.2012.05.019

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413