全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Groundwater Residence Time Modelling in the Aquifers of the Ampasindava Peninsula, Northwestern of Madagascar

DOI: 10.4236/oalib.1109007, PP. 1-18

Subject Areas: Environmental Sciences, Geology

Keywords: Isotopes, Groundwater, Model, Age, Madagascar

Full-Text   Cite this paper   Add to My Lib

Abstract

This study concerns the use of isotope techniques to assess groundwater resource management in mining area. The objective of the study is first to estimate the groundwater residence time in the peninsula of Ampasindava and secondly to determine the relationship between wastewater from mining activity and groundwater resource in the study area by using environmental isotopes. It will contribute to clarifying the impact of the mining activity waste water on the groundwater in the study area. The stable isotopes of oxygen and hydrogen were used to understand groundwater recharge process and its origin. Tritium was used to estimate the groundwater residence time and hydrochemical tools helped identify the groundwater chemical facies. A simulation based on mathematical model was applied to estimate the groundwater residence time using the tritium concentration value of each groundwater sample. As results, the groundwater geochemical characteristics in the Ampasindava peninsula show two different water types. This assumption was confirmed by the isotope signature of the water samples. The results of the simulation run under exponential and dispersion models showed higher values of groundwater age for the spring waters compared to the groundwater age using a piston flow model. It suggests that spring waters are older than groundwater in the alluvium plains. The spring water seems to be protected from rare earth mining exploitation pollution. On the contrary, the mining exploitation could be a source of contamination of the groundwater in the alluvium plain.

Cite this paper

Fareze, L. P. , Rajaobelison, J. , Ramaroson, V. , Razafitsalama, F. F. A. and Rakotomalala, C. U. (2022). Groundwater Residence Time Modelling in the Aquifers of the Ampasindava Peninsula, Northwestern of Madagascar. Open Access Library Journal, 9, e9007. doi: http://dx.doi.org/10.4236/oalib.1109007.

References

[1]  Downing, B.D., Bergamaschi, B.A., Kendall, C., Kraus, T.E.C., Dennis, K.J., Carter, J.A. and Von Dessonneck, T.S. (2016) Using Continuous Underway Isotope Measurements to Map Water Residence Time in Hydrodynamically Complex Tidal Environments. Environmental Science & Technology, 50, 13387-13396. https://doi.org/10.1021/acs.est.6b05745
[2]  Glynn, P.D. and Plummer, L.N. (2005) Geochemistry and the Understanding of Groundwater Systems. Hydrogeology Journal, 13, 263-287. https://doi.org/10.1007/s10040-004-0429-y
[3]  Donahue, D.J., Linnick, T.W. and Jull, A.J.T. (1990) Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements. Radiocarbon, 32, 135-142. https://doi.org/10.1017/S0033822200040121
[4]  Clark, I.D. and Fritz, P. (1997) Environmental Isotopes in Hydrogeology. Lewis Pub., Boca Raton, 328 p.
[5]  Plummer, L.N., Bexfield, L.M. anderholm, S.K., Sanford, W.E. and Busenberg, E. (2004) Geochemical Characterization of Groundwater Flow in the Santa Fe Group Aquifer System, Middle Rio Grande Basin, New Mexico, U.S. Geological Survey Water-Resources Investigations Report 03-4 I 3 l.
[6]  Nelms, D.L., Harlow, G.E., Plummer, L.N. and Busenberg, E. (2003) Aquifer Susceptibility in Virginia, 1998-2000. US Geological Survey Water-Resources Investigations Report 03-4278.
[7]  Böhlke, J.K. and Denver, J.M. (1995) Combined Use of Groundwater Dating, Chemical, and Isotopic Analyses to Resolve the History and Fate of Nitrate Contamination in Two Agricultural Watersheds, Atlantic Coastal Plain, Maryland. Water Resources Research, 31, 2319-2339. https://doi.org/10.1029/95WR01584
[8]  Lindsey, B.D., Phillips, S.W., Donnelly, C.A., Speiran, G.K., Plummer, L.N., Bohlke, J.K., Focazio, M.J., Burton, W.C. and Busenberg, E. (2003) Residence Times and Nitrate Transport in Ground Water Discharging to Streams in the Chesapeake Bay Watershed. US Geological Survey Water-Resources Investigations Report 03-4035, 201 p.
[9]  Shapiro, S.D., Busenberg, E., Focazio, M.J. and Plummer, L.N. (2004) Historical Trends in Occurrence and Atmospheric Inputs of Halogenated Volatile Organic Compounds in Untreated Ground Water Used as a Source of Drinking Water. Science Total Environment, 321, 201-217. https://doi.org/10.1016/j.scitotenv.2003.09.007
[10]  Dussarat, B. (1994) Structure et fonctionnement des aquifères de socle altéré en zone tropicale d’altitude cas du bassin de Mahitsy. Thèse de doctorat, 143 p.
[11]  Rakotovao, S.R. (2009) Les minéralisations associées aux intrusions alcalines d’Ampasindava. Thèse de doctorat, Université d’Antananarivo, Ecole Supérieure Polytechnique d’Antananarivo, 155 p.
[12]  Ganzeev, A. and Grechishchev, O.K. (2003) A New Genetic Type of Rare-Metal Alcali Granites of Madagascar. Russian Geology and Geophysics, 44, 539-553.
[13]  Melluso, L. (2007) Petrogenesis of a Basanite-Tephrite-Phonolite Volcanic Suite in the Bobaomby (Cap d’Ambre) Peninsula, Northern Madagascar. Journal of African Earth Sciences, 49, 29-42. https://doi.org/10.1016/j.jafrearsci.2007.06.002
[14]  Bésairie, H. and Collignon, M. (1972) Géologie de Madagascar: Les terrains sédimentaires. Annales Géologiques de Madagascar Fascicule, No. 35.
[15]  Donnot, M. (1964) Les complexes intrusifs alcalins de la province d’Ampasindava et leurs minéralisations. BRGM Madagascar.
[16]  Rakotondrainibe, J.H. (2005) Les huit (8) zones Hydrogéologiques et principales nappes de Madagascar, 1974, mise à jour 2005.
[17]  Theodrsson, P. (1996) Measurement of Weak Radioactivity. World Scientific, Singapore, 3286-3287. https://doi.org/10.1142/2800
[18]  Top, G. and Algin, E. (2009) Tritium Measurement in Drinking Water. Balkan Physics Letter, 16, Article ID: 161019.
[19]  Fontes, J.C. (1983) Dating of Groundwater. Guidebook on Nuclear Techniques Hydrology. Technical Report Series No. 91. IAEA, Vienna.
[20]  Małoszewski, P. and Zuber, A. (1996) Lumped Parameter Models for the Interpretation of Environmental Tracer Data. Manual on the Mathematical Models in Isotope Hydrogeology. IAEA-TECDOC-9109-58.
[21]  Yurtsever, Y. (1983) Model for Trace Data Analysis. In: Guidebook on Nuclear Techniques in Hydrology, Technical Report Series No. 91, IAEA, Vienna.
[22]  Kreft, A. and Zuber, A. (1978) On the Physical Meaning of the Dispersion Equation and Its Solution for Different Initial and Boundary Conditions. Chemical Engineering Science, 33, 1471-1480. https://doi.org/10.1016/0009-2509(78)85196-3
[23]  Piper, A.M. (1944) A Graphic Procedure in Geochemical Interpretation of Water Analysis. Transactions of the American Geophysical Union, 25, 914-928. https://doi.org/10.1029/TR025i006p00914
[24]  Fontes, J.C. (1976) Isotopes du milieu et cycles des eaux naturelles: Quelques aspects. Thèse de doctorat d’état, Université Pierre et Marie Curie, Paris VI, Paris, 208 p.
[25]  Subyani, A.M. (2004) Use of Chloride-Mass Balance and Environmental Isotopes for Evaluation of Groundwater Recharge in the Alluvial Aquifer, Wadi Tharad, West Saudi Arabia. Environmental Geology, 46, 741-749. https://doi.org/10.1007/s00254-004-1096-y
[26]  Fontes, J.C. (1989) Isotopes et ressources en eau. Hydrogéologie, 3, 135-142.
[27]  Fontes, J.C., Yousfi, M. and Allison, G.B. (1986) Estimation of Long-Term, Diffuse Groundwater Discharge in the Northern Sahara Using Stable Isotope Profiles in Soil Water. Journal of Hydrology, 86, 315-327. https://doi.org/10.1016/0022-1694(86)90170-8
[28]  Gat, J.R. (1980) The Isotopes of Hydrogen and Oxygen in Precipitation. In: Fritz, P. and Fontes, J.C., Eds., Handbook of Environmental Isotope Geochemistry, Elsevier, Amsterdam, 21-47. https://doi.org/10.1016/B978-0-444-41780-0.50007-9
[29]  Fritz, P. and Fontes, J.C. (1980) Handbook of Environmental Isotope Geochemistry. Elsevier, Amsterdam, 21 p.
[30]  Gat, J. and Carmi, L. (1970) Evolution of the Isotopic Composition of Atmospheric Waters in the Mediterranean Sea Area. Journal of Geophysical Research, 75, 3039-3048. https://doi.org/10.1029/JC075i015p03039
[31]  Craig, H. (1961) Standard for Representing Concentrations of Deuterium and Oxygen-18 in Natural Waters. Science, 133, 1833-1834. https://doi.org/10.1126/science.133.3467.1833
[32]  Plummer, L.N., Prestemon, E.C. and Parkhurst, D.L. (1994) An Interactive Code (NETPATH) for Modeling NET Geochemical Reactions along a Flow Path. Version 2.0, U.S. Geological Survey Water-Resources Investigations Report 94-4169, 130 p.
[33]  Sambienou, W.G., Gourcy, L., Alassane, A., Kaki, C., Tossou, Y.Y.J., Mama, D., Boukari, M. and Zouari, K. (2018) Flow Pattern and Residence Time of Groundwater within Volta River Basin in Benin (Northwestern Benin). Journal of Water Resource and Protection, 10, 663-680. https://doi.org/10.4236/jwarp.2018.107038
[34]  Beyerle, U. (2002) Groundwater Dating Using Environmental Tracers and Black Box Models. A Survey of Methods for Groundwater Recharge in Arid and Semi-Arid Regions. UNEP/DEWA/RS.02-2.
[35]  Li, X., Zhang, L. and Hou, X. (2008) Use of Hydrogeochemistry and Environmental Isotopes for Evaluation of Groundwater in Qingshuihe North of China. Hydrogeology Journal, 16, 335-348. https://doi.org/10.1007/s10040-007-0269-7
[36]  Fareze, L.P. (2016) Modélisation des eaux souterraines utilisant la technique isotopique dans l’aquifère sédimentaire du bassin Mahafaly Sudouest de Madagascar. Thèse de doctorat, Université d’Antananarivo, Madagascar, 139 p.
[37]  Ce qu’il importe de savoir sur le projet d’exploitation des terres rares d’Ampasindava. https://madagascar-tribune.com/Ce-qu-il-importe-de-savoir-sur-le,23234.html

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413