全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

E. coli: Health Impacts, Exposure Evaluation, and Hazard Reduction

DOI: 10.4236/oalib.1108860, PP. 1-28

Subject Areas: Chemical Engineering & Technology

Keywords: Escherichia coli, Water Treatment, Chlorine, Solar Water Disinfection (SODIS), Photoelectrocatalytic Disinfection, Advanced Hydrodynamic Cavitation Reactor (ARHCR)

Full-Text   Cite this paper   Add to My Lib

Abstract

Around one billion persons could not possess access to secured potable water. In developing countries, the largest part of the illnesses remains provoked by pathogens infected water. As a well-known pathogen, Escherichia coli is largely employed as an indicator of coliform contamination. This work firstly defines microbiologically E. coli bacteria, presents a brief history relating to their first discovery and following contagions, and discusses their clinical characteristics besides their subsistence in nature. A general examination concerning different techniques used for controlling such bacteria is presented. The level of morbidity and mortality changes following the strain and the host’s properties. In poor nations, diarrhoeal illness largely conducts to dangerous diseases and dying. In rich nations, even if childhood diarrhoea stays not much serious, contagion with verocytotoxigenic E. coli may lead to haemolytic uremic syndrome and thrombiotic thrombo-cytopaenia purpura. Conventional water treatments employ chlorine injection that remains neither an appropriate nor economically feasible method in poor regions. Such competitive techniques may be overcome by a more affordable and off-grid method like a device founded on TiO2 photoelectrocatalytic disinfection concepts and an advanced hydrodynamic cavitation reactor (ARHCR). Applying photoelectrocatalytic processes in scaled-down and portable equipment authorizes performant water treatment when employing an off-grid point-of-use apparatus. A pilot-scale ARHCR was tested to kill microbes in water, and a fresh probable disinfection route of the ARHCR was suggested comprising hydrodynamical and sonochemical impacts. The ARHCR could be used as an encouraging different or finishing instrument for neutralizing pathogens in water, even if more investigation on the disinfection route and scale up remain required.

Cite this paper

Ghernaout, D. , Elboughdiri, N. and Lajimi, R. (2022). E. coli: Health Impacts, Exposure Evaluation, and Hazard Reduction. Open Access Library Journal, 9, e8860. doi: http://dx.doi.org/10.4236/oalib.1108860.

References

[1]  Percival, S.L. and Williams, D.W. (2014) Escherichia coli (Chapter 6). In: Percival, S.L., Yates, M.V., Williams, D.W., et al., Eds., Microbiology of Waterborne Diseases (Second Edition), Elsevier Ltd., Amsterdam, 89-117.
[2]  Roshith, M., Pathak, A., Nanda Kumar, A.K., Anantharaj, G., Saranyan, V., Ramasubramanian, S., Satheesh, T.G. and Ravi Kumar, D.V. (2021) Continuous Flow Solar Photocatalytic Disinfection of E. coli Using Red Phosphorus Immobilized Capillaries as Optofluidic Reactors. Applied Surface Science, 540, Article ID: 148398. https://doi.org/10.1016/j.apsusc.2020.148398
[3]  Ghernaout, D., Naceur, M.W. and Aouabed, A. (2011) On the Dependence of Chlorine By-Products Generated Species Formation of the Electrode Material and Applied Charge during Electrochemical Water Treatment. Desalination, 270, 9-22. https://doi.org/10.1016/j.desal.2011.01.010
[4]  Ghernaout, D., Moulay, S., Ait Messaoudene, N., Aichouni, M., Naceur, M.W. and Boucherit, A. (2014) Coagulation and Chlorination of NOM and Algae in Water Treatment: A Review. International Journal of Environmental Monitoring and Analysis, 2, 23-34. https://doi.org/10.11648/j.ijema.s.2014020601.14
[5]  Ghernaout, D. (2017) Water Treatment Chlorination: An Updated Mechanistic Insight Review. Chemistry Research Journal, 2, 125-138.
[6]  Ghernaout, D. and Elboughdiri, N. (2020) Towards Enhancing Ozone Diffusion for Water Disinfection—Short Notes. Open Access Library Journal, 7, e6253. https://doi.org/10.4236/oalib.1106253
[7]  Ghernaout, D. and Elboughdiri, N. (2021) Searching If SARS-CoV-2 Subsists Following the Disinfection of Potable Water. Open Access Library Journal, 8, e7505. https://doi.org/10.4236/oalib.1107505
[8]  Ghernaout, D. and Elboughdiri, N. (2021) On the Disinfection Chain as a New Technique for Economic and Chemical Free Disinfection of Public Places from Viruses. Saudi Journal of Engineering and Technology, 6, 130-138.
[9]  Ghernaout, D. and Elboughdiri, N. (2020) UV-C/H2O2 and Sunlight/H2O2 in the Core of the Best Available Technologies for Dealing with Present Dares in Domestic Wastewater Reuse. Open Access Library Journal, 7, e6161. https://doi.org/10.4236/oalib.1106161
[10]  Ghernaout, D. and Elboughdiri, N. (2020) Vacuum-UV Radiation at 185 nm for Disinfecting Water. Chemical Science & Engineering Research, 2, 12-17. https://doi.org/10.36686/Ariviyal.CSER.2020.02.04.015
[11]  Ghernaout, D., Alghamdi, A., Aichouni, M. and Touahmia, M. (2018) The Lethal Water Tri-Therapy: Chlorine, Alum, and Polyelectrolyte. World Journal of Applied Chemistry, 3, 65-71. https://doi.org/10.11648/j.wjac.20180302.14
[12]  Irki, S., Kasbadji-Merzouk, N., Hanini, S. and Ghernaout, D. (2020) Modelling of the Coupling of Desalination Plants with the Thermal Solar Energy System. Water Supply, 20, 1807-1822. https://doi.org/10.2166/ws.2020.092
[13]  Ghernaout, D. and Elboughdiri, N. (2020) Solar Treatment in the Core of the New Disinfection Technologies. Chemical Science & Engineering Research, 2, 6-11. https://doi.org/10.36686/Ariviyal.CSER.2020.02.04.014
[14]  Ghernaout, D., Alghamdi, A., Touahmia, M., Aichouni, M. and Ait Messaoudene, N. (2018) Nanotechnology Phenomena in the Light of the Solar Energy. Journal of Energy, Environmental & Chemical Engineering, 3, 1-8.
[15]  Konokhova, A.I., Gelash, A.A., Yurkin, M.A., Chernyshev, A.V. and Maltsev, V.P. (2013) High-Precision Characterization of Individual E. coli Cell Morphology by Scanning Flow Cytometry. Cytometry Part A, 83A, 568-575. https://doi.org/10.1002/cyto.a.22294
[16]  Ghernaout, D., Badis, A., Ghernaout, B. and Kellil, A. (2008) Application of Electrocoagulation in Escherichia coli Culture and Two Surface Waters. Desalination, 219, 118-125. https://doi.org/10.1016/j.desal.2007.05.010
[17]  Ghernaout, D. (2017) Microorganisms’ Electrochemical Disinfection Phenomena. EC Microbiology, 9, 160-169.
[18]  Ghernaout, D., Alghamdi, A. and Ghernaout, B. (2019) Microorganisms’ Killing: Chemical Disinfection vs. Electrodisinfection. Applied Engineering, 3, 13-19.
[19]  Jiménez, N., Senchenkova, S.N., Knirel, Y.A., Pieretti, G., Corsaro, M.M., Aquilini, E., Regué, M., Merino, S. and Tomás, J.M. (2012) Effects of Lipopolysaccharide Biosynthesis Mutations on K1 Polysaccharide Association with the Escherichia coli Cell Surface. Journal of Bacteriology, 194, 3356-3367. https://doi.org/10.1128/JB.00329-12
[20]  Leclerc, H., Mossel, D.A., Edberg, S.C. and Struijk, C.B. (2001) Advances in the Bacteriology of the Coliform Group: Their Suitability as Markers of Microbial Water Safety. Annual Review of Microbiology, 55, 201-234. https://doi.org/10.1146/annurev.micro.55.1.201
[21]  Bavaro, M.F. (2012) E. coli O157: H7 and Other Toxigenic Strains: The Curse of Global Food Distribution. Current Gastroenterology Reports, 14, 317-323. https://doi.org/10.1007/s11894-012-0264-6
[22]  Rangel, J.M., Sparling, P.H., Crowe, C., Griffin, P.M. and Swerdlow, D.L. (2005) Epidemiology of Escherichia coli O157:H7 Outbreaks, United States, 1982-2002. Emerging Infectious Diseases, 11, 603-609. https://doi.org/10.3201/eid1104.040739
[23]  Wang, G. and Doyle, M.P. (1998) Survival of Enterohemorrhagic Escherichia coli O157:H7 in Water. Journal of Food Protection, 61, 662-667. https://doi.org/10.4315/0362-028X-61.6.662
[24]  Watterworth, L., Rosa, B., Schraft, H., Topp, E. and Leung, K. (2006) Survival of Various ERIC Genotypes of Shiga Toxin-Producing Escherichia coli in Well Water. Water, Air, & Soil Pollution, 177, 367-382. https://doi.org/10.1007/s11270-006-9179-x
[25]  Keene, W.E., McAnulty, J.M., Hoesly, F.C., Williams Jr., L.P., Hedberg, K., Oxman, G.L., Barrett, T.J., Pfaller, M.A. and Fleming, D.W. (1994) A Swimming-Associated Outbreak of Hemorrhagic Colitis Caused by Escherichia coli O157:H7 and Shigella sonnei. The New England Journal of Medicine, 331, 579-584. https://doi.org/10.1056/NEJM199409013310904
[26]  Paunio, M., Pebody, R., Keskimäki, M., Kokki, M., Ruutu, P., Oinonen, S., Vuotari, V., Vuotari, A., Siitonen, A., Lahti, E. and Leinikki, P. (1999) Swimming-Associated Outbreak of Escherichia coli O157:H7. Epidemiology and Infection, 122, 1-5. https://doi.org/10.1017/S0950268898001927
[27]  Yates, J. (2005) Traveler’s Diarrhea. American Family Physician, 71, 2095-2100.
[28]  Spinale, J.M., Ruebner, R.L., Copelovitch, L. and Kaplan, B.S. (2013) Long-Term Outcomes of Shiga Toxin Hemolytic Uremic Syndrome. Pediatric Nephrology, 28, 2097-2105. https://doi.org/10.1007/s00467-012-2383-6
[29]  Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic E. coli. Clinical Microbiology Reviews, 11, 142-201. https://doi.org/10.1128/CMR.11.1.142
[30]  Escherich, T. (1885) Die darmbakterien des neugeborenen und sauglings. Fortschritte der Medizin, 3, 515-522.
[31]  Castellani, A. and Chalmers, A.J. (1919) Manual of Tropical Medicine. Williams, Wood and Co., New York. https://doi.org/10.5962/bhl.title.84653
[32]  Croxen, M.A. and Finlay, B.B. (2010) Molecular Mechanisms of Escherichia coli Pathogenicity. Nature Reviews Microbiology, 8, 26-38. https://doi.org/10.1038/nrmicro2265
[33]  Chu, W., Zere, T.R., Weber, M.M., Wood, T.K., Whiteley, M., Hidalgo-Romano, B., Valenzuela Jr., E. and McLean, R.J. (2012) Indole Production Promotes Escherichia coli Mixed-Culture Growth with Pseudomonas aeruginosa by Inhibiting Quorum Signaling. Applied and Environmental Microbiology, 78, 411-419. https://doi.org/10.1128/AEM.06396-11
[34]  Muir, R. and Ritchie, J. (1937) Manual of Bacteriology, University Press, Oxford.
[35]  Brumbaugh, A.R. and Mobley, H.L. (2012) Preventing Urinary Tract Infection: Progress toward an Effective Escherichia coli Vaccine. Expert Review of Vaccines, 11, 663- 676. https://doi.org/10.1586/erv.12.36
[36]  Ghernaout, D. (2019) Reviviscence of Biological Wastewater Treatment—A Review. Applied Engineering, 3, 46-55.
[37]  Ghernaout, D. and Elboughdiri, N. (2019) Upgrading Wastewater Treatment Plant to Obtain Drinking Water. Open Access Library Journal, 6, e5959. https://doi.org/10.4236/oalib.1105959
[38]  Rivera, S.C., Hazen, T.C. and Toranzos, G.A. (1988) Isolation of Fecal Coliforms from Pristine Sites in a Tropical Rain Forest. Applied and Environmental Microbiology, 54, 513-517. https://doi.org/10.1128/aem.54.2.513-517.1988
[39]  Ghernaout, D. and Elboughdiri, N. (2020) Electrochemical Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6020.
[40]  Ghernaout, D., Elboughdiri, N. and Ghareba, S. (2020) Fenton Technology for Wastewater Treatment: Dares and Trends. Open Access Library Journal, 7, e6045. https://doi.org/10.4236/oalib.1106045
[41]  Ghernaout, D. and Elboughdiri, N. (2020) On the Treatment Trains for Municipal Wastewater Reuse for Irrigation. Open Access Library Journal, 7, e6088.
[42]  Ghernaout, D. and Elboughdiri, N. (2020) Domestic Wastewater Treatment: Difficulties and Reasons, and Prospective Solutions—China as an Example. Open Access Library Journal, 7, e6141.
[43]  Gleeson, C. and Gray, N. (1997) The Coliforms Index and Waterborne Disease. E. & F.N. Spon, London.
[44]  Ghernaout, D. and Elboughdiri, N. (2020) Advanced Oxidation Processes for Wastewater Treatment: Facts and Future Trends. Open Access Library Journal, 7, e6139.
[45]  Dev, V.J., Main, M. and Gould, I. (1991) Waterborne Outbreak of Escherichia coli O157. The Lancet, 337, 1412. https://doi.org/10.1016/0140-6736(91)93092-N
[46]  Swerdlow, D.L., Woodruff, B.A., Brady, R.C., Griffin, P.M., Tippen, S., Donnell Jr., H.D., Geldreich, E., Payne, B.J., Meyer Jr., A., Wells, J.G., Greene, K.D., Bright, M., Bean, N.H. and Blake, P.A. (1992) A Waterborne Outbreak in Missouri of Escherichia coli O157:H7 Associated with Bloody Diarrhoea and Death. Annals of Internal Medicine, 117, 812-819. https://doi.org/10.7326/0003-4819-117-10-812
[47]  Chalmers, R.M., Aird, H. and Bolton, F.J. (2000) Waterborne Escherichia coli O157. Journal of Applied Microbiology, 88, 124S-132S. https://doi.org/10.1111/j.1365-2672.2000.tb05340.x
[48]  Gyles, C.L. (2007) Shiga-Toxin Producing Escherichia coli: An Overview. Journal of Animal Science, 85, E45-E62. https://doi.org/10.2527/jas.2006-508
[49]  Johnson, J.Y.M., Thomas, J.E., Graham, T.A., Townshend, I., Byrne, J., Selinger, L.B. and Gannon, V.P.J. (2003) Prevalence of Escherichia coli O157:H7 and Salmonella spp. in Surface Waters of Southern Alberta and Its Relation to Manure Sources. Canadian Journal of Microbiology, 49, 326-335. https://doi.org/10.1139/w03-046
[50]  Watchel, M.R., Whitehand, L.C. and Mandrell, R.E. (2002) Association of Escherichia coli O157:H7 with Preharvest Leaf Lettuce upon Exposure to Contaminated Irrigation Water. Journal of Food Protection, 65, 18-25. https://doi.org/10.4315/0362-028X-65.1.18
[51]  Kerr, M., Fitzgerald, M., Sheridan, I.J., McDowell, D.A. and Blair, I.S. (1999) Survival of Escherichia coli O157:H7 in Bottled Natural Mineral Water. Journal of Applied Microbiology, 87, 833-841. https://doi.org/10.1046/j.1365-2672.1999.00928.x
[52]  Rice, E.W., Johnson, C.H., Wild, D.K. and Reasoner, D.J. (1992) Survival of Escherichia coli 0157:H7 in Drinking Water Associated with a Waterborne Disease Outbreak of Hemorrhagic Colitis. Letters in Applied Microbiology, 15, 38-40. https://doi.org/10.1111/j.1472-765X.1992.tb00719.x
[53]  Artz, R.R. and Killham, K. (2002) Survival of Escherichia coli O157:H7 in Private Drinking Water Wells: Influences of Protozoan Grazing and Elevated Copper Concentrations. FEMS Microbiology Letters, 216, 117-122. https://doi.org/10.1111/j.1574-6968.2002.tb11424.x
[54]  Hunter, P.R. (2003) Drinking Water and Diarrhoeal Disease due to Escherichia coli. Journal of Water and Health, 1, 65-72. https://doi.org/10.2166/wh.2003.0008
[55]  Hancock, D.D., Besser, T.E. and Rice, D.H. (1998) Ecology of Escherichia coli O157:H7 in Cattle and Impact of Management Practices. In: Kaper, J.B. and O’Brien, A.D., Eds., Escherichia coli O157:H7 and Other Shiga Toxin-Producing E. coli Strains, American Society for Microbiology, Washington DC, 85-91.
[56]  Ackman, D., Marks, S., Mack, P., Caldwell, M., Root, T. and Birkhead, G. (1997) Swimming-Associated Haemorrhagic Colitis Due to Escherichia coli O157:H7 Infection: Evidence of Prolonged Contamination of a Fresh Water Lake. Epidemiology and Infection, 119, 1-8. https://doi.org/10.1017/S095026889700770X
[57]  Schets, F.M., During, M., Italiaander, R., Heijnen, L., Rutjes, S.A., van der Zwaluw, W.K. and de Roda Husman, A.M. (2005) Escherichia coli O157:H7 in Drinking Water from Private Water Supplies in the Netherlands. Water Research, 39, 4485- 4493. https://doi.org/10.1016/j.watres.2005.08.025
[58]  Gannon, V.P.J., Graham, T.A., Read, S., Ziebell, K., Muckle, A., Mori, J., Thomas, J., Selinger, B., Townshend, I. and Byrne, J. (2004) Bacterial Pathogens in Rural Water Supplies in Southern Alberta, Canada. Journal of Toxicology and Environmental Health, Part A, 67, 1643-1653. https://doi.org/10.1080/15287390490492421
[59]  Shelton, D.R. and Karns, J.S. (2001) Quantitative Detection of Escherichia coli O157 in Surface Waters by Using Immunomagnetic Electrochemiluminescence. Applied and Environmental Microbiology, 67, 2908-2915. https://doi.org/10.1128/AEM.67.7.2908-2915.2001
[60]  Rosenberg, M.L., Koplan, J.P., Wachsmuth, I.K., Wells, J.G., Gangarosa, E.J., Guerrant, R.L. and Sack, D.A. (1977) Epidemic Diarrhea at Crater Lake from Enterotoxigenic Escherichia coli. A Large Waterborne Outbreak. Annals of Internal Medicine, 86, 714-718. https://doi.org/10.7326/0003-4819-86-6-714
[61]  O’Mahony, M., Noah, N.D., Evans, B., Harper, D., Rowe, B., Lowes, J.A., Pearson, A. and Goode, B. (1986) An Outbreak of Gastroenteritis on a Passenger Cruise Ship. The Journal of Hygiene, 97, 229-236. https://doi.org/10.1017/S0022172400065311
[62]  Daniels, N.A., Neimann, J., Karpati, A., Parashar, U.D., Greene, K.D., Wells, J.G., Srivastava, A., Tauxe, R.V., Mintz, E.D. and Quick, R. (2000) Traveler’s Diarrhea at Sea: Three Outbreaks of Waterborne Enterotoxigenic Escherichia coli on Cruise Ships. The Journal of Infectious Diseases, 181, 1491-1495. https://doi.org/10.1086/315397
[63]  Rice, E.W., Clark, R.M. and Johnson, C.H. (1999) Chlorine Inactivation of Escherichia coli O157:H7. Emerging Infectious Diseases, 5, 461-463. https://doi.org/10.3201/eid0503.990322
[64]  Kaneko, M. (1998) Chlorination of Pathogenic E. coli O157. Water Science & Technology, 38, 141-144. https://doi.org/10.2166/wst.1998.0525
[65]  Zhao, T., Zhao, P., West, J.W., Bernard, J.K., Cross, H.G. and Doyle, M.P. (2006) Inactivation of Enterohemorrhagic Escherichia coli in Rumen Content- or Feces- Contaminated Drinking Water for Cattle. Applied and Environmental Microbiology, 72, 3268-3273. https://doi.org/10.1128/AEM.72.5.3268-3273.2006
[66]  Cheswick, R., Moore, G., Nocker, A., Hassard, F., Jefferson, B. and Jarvis, P. (2020) Chlorine Disinfection of Drinking Water Assessed by Flow Cytometry: New Insights. Environmental Technology & Innovation, 19, Article ID: 101032. https://doi.org/10.1016/j.eti.2020.101032
[67]  Chauret, C., Smith, C. and Baribeau, H. (2008) Inactivation of Nitoromonas europaea and Pathogenic Escherichia coli by Chlorine and Monochloramine. Journal of Water and Health, 6, 315-322. https://doi.org/10.2166/wh.2008.052
[68]  Zhao, T., Doyle, M.P., Zhao, P., Blake, P. and Wu, F. (2001) Chlorine Inactivation of Escherichia coli O157:H7 in Water. Journal of Food Protection, 64, 1607-1609. https://doi.org/10.4315/0362-028X-64.10.1607
[69]  Spinks, A.T., Dunstan, R.H., Harrison, T., Coombes, P. and Kuczera, G. (2006) Thermal Inactivation of Water-Borne Pathogenic and Indicator Bacteria at Sub-Boiling Temperatures. Water Research, 40, 1326-1332. https://doi.org/10.1016/j.watres.2006.01.032
[70]  Lagunas-Solar, M.C., Cullor, J.S., Zeng, N.X., Truong, T.D., Essert, T.K., Smith, W.L. and Piña, C. (2005) Disinfection of Dairy and Animal Farm Wastewater with Radio Frequency Power. Journal of Dairy Science, 88, 4120-4131. https://doi.org/10.3168/jds.S0022-0302(05)73096-4
[71]  Sommer, R., Lhotsky, M., Haider, T. and Cabaj, A. (2000) UV Inactivation of Escherichia coli O157 and Other Pathogenic Escherichia coli Strains in Water. Journal of Food Protection, 63, 1015-1020. https://doi.org/10.4315/0362-028X-63.8.1015
[72]  Murphy, H.M., Payne, S.J. and Gagnon, G.A. (2008) Sequential UV- and Chlorine- Based Disinfection to Mitigate Escherichia coli in Drinking Water Biofilms. Water Research, 42, 2083-2092. https://doi.org/10.1016/j.watres.2007.12.020
[73]  Cherchi, C. and Gu, A.Z. (2011) Effect of Bacterial Growth Stage on Resistance to Chlorine Disinfection. Water Science & Technology, 64, 7-13. https://doi.org/10.2166/wst.2011.536
[74]  Pironti, C., Dell’Annunziata, F., Giugliano, R., Folliero, V., Galdiero, M., Ricciardi, M., Motta, O., Proto, A. and Franci, G. (2021) Comparative Analysis of Peracetic Acid (PAA) and Permaleic Acid (PMA) in Disinfection Processes. Science of the Total Environment, 797, Article ID: 149206. https://doi.org/10.1016/j.scitotenv.2021.149206
[75]  Fitzhenry, K., Clifford, E., Rowan, N. and Val del Rio, A. (2021) Bacterial Inactivation, Photoreactivation and Dark Repair Post Flow-Through Pulsed UV Disinfection. Journal of Water Process Engineering, 41, Article ID: 102070. https://doi.org/10.1016/j.jwpe.2021.102070
[76]  He, J., Zheng, Z. and Lo, I.M.C. (2021) Different Responses of Gram-Negative and Gram-Positive Bacteria to Photocatalytic Disinfection Using Solar-Light-Driven Magnetic TiO2-Based Material, and Disinfection of Real Sewage. Water Research, 207, Article ID: 117816. https://doi.org/10.1016/j.watres.2021.117816
[77]  Matafonova, G. and Batoev, V. (2022) Dual-Wavelength Light Radiation for Synergistic Water Disinfection. Science of the Total Environment, 806, Article ID: 151233. https://doi.org/10.1016/j.scitotenv.2021.151233
[78]  Montenegro-Ayo, R., Barrios, A.C., Mondal, I., Bhagat, K., Morales-Gomero, J.C., Abbaszadegan, M., Westerhoff, P., Perreault, F. and Garcia-Segura, S. (2020) Portable Point-of-Use Photoelectrocatalytic Device Provides Rapid Water Disinfection. Science of the Total Environment, 737, Article ID: 140044. https://doi.org/10.1016/j.scitotenv.2020.140044
[79]  Sun, X., Wang, Z., Xuan, X., Ji, L., Li, X., Tao, Y., Boczkaj, G., Zhao, S., Yoon, J.Y. and Chen, S. (2021) Disinfection Characteristics of an Advanced Rotational Hydrodynamic Cavitation Reactor in Pilot Scale. Ultrasonics Sonochemistry, 73, Article ID: 105543. https://doi.org/10.1016/j.ultsonch.2021.105543
[80]  Liu, Y., Zhang, S., Fang, H., Wang, Q., Jiang, S., Zhang, C. and Qiu, P. (2022) Inactivation of Antibiotic Resistant Bacterium Escherichia coli by Electrochemical Disinfection on Molybdenum Carbide Electrode. Chemosphere, 287, Article ID: 132398. https://doi.org/10.1016/j.chemosphere.2021.132398
[81]  Xia, D., Tang, Z., Wang, Y., Yin, R., He, H., Xie, X., Sun, J., He, C., Wong, P.K. and Zhang, G. (2020) Piezo-Catalytic Persulfate Activation System for Water Advanced Disinfection: Process Efficiency and Inactivation Mechanisms. Chemical Engineering Journal, 400, Article ID: 125894. https://doi.org/10.1016/j.cej.2020.125894
[82]  Börjesson, S., Bengtsson, B., Jernberg, C. and Englund, S. (2013) Spread of Extended- Spectrum Beta-Lactamase Producing Escherichia coli Isolates in Swedish Broilers Mediated by an Incl Plasmid Carrying blaCTX-M-1. Acta Veterinaria Scandinavica, 55, Article No. 3. https://doi.org/10.1186/1751-0147-55-3
[83]  Ghernaout, D. and Elboughdiri, N. (2020) Urgent Proposals for Disinfecting Hospital Wastewaters during COVID-19 Pandemic. Open Access Library Journal, 7, e6373. https://doi.org/10.4236/oalib.1106373
[84]  Bush, K. (2010) Alarming β-Lactamase-Mediated Resistance in Multidrug-Resistant Enterobacteriaceae. Current Opinion in Microbiology, 13, 558-564. https://doi.org/10.1016/j.mib.2010.09.006
[85]  Ghernaout, D. and Ghernaout, B. (2020) Controlling COVID-19 Pandemic through Wastewater Monitoring. Open Access Library Journal, 7, e6411. https://doi.org/10.4236/oalib.1106411
[86]  Ghernaout, D. (2013) The Best Available Technology of Water/Wastewater Treatment and Seawater Desalination: Simulation of the Open Sky Seawater Distillation. Green and Sustainable Chemistry, 3, 68-88. https://doi.org/10.4236/gsc.2013.32012
[87]  Ghernaout, D. and Elboughdiri, N. (2020) Antibiotics Resistance in Water Mediums: Background, Facts, and Trends. Applied Engineering, 4, 1-6.
[88]  Ghernaout, D. and Elboughdiri, N. (2020) Removing Antibiotic-Resistant Bacteria (ARB) Carrying Genes (ARGs): Challenges and Future Trends. Open Access Library Journal, 7, e6003. https://doi.org/10.4236/oalib.1106003
[89]  Ghernaout, D. and Elboughdiri, N. (2020) Should We Forbid the Consumption of Antibiotics to Stop the Spread of Resistances in Nature? Open Access Library Journal, 7, e6138.
[90]  Ghernaout, D. (2020) Demobilizing Antibiotic-Resistant Bacteria and Antibiotic Resistance Genes by Electrochemical Technology: New Insights. Open Access Library Journal, 7, e6685. https://doi.org/10.4236/oalib.1106685
[91]  Livermore, D.M. (2012) Fourteen Years in Resistance. International Journal of Antimicrobial Agents, 39, 283-294. https://doi.org/10.1016/j.ijantimicag.2011.12.012
[92]  Maal-Bared, R., Bartlett, K.H., Bowie, W.R. and Hall, E.R. (2013) Phenotypic Antibiotic Resistance of Escherichia coli and E. coli O157 Isolated from Water, Sediment and Biofilms in an Agricultural Watershed in British Columbia. Science of the Total Environment, 443, 315-323. https://doi.org/10.1016/j.scitotenv.2012.10.106

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413