All Title Author
Keywords Abstract

Publish in OALib Journal
ISSN: 2333-9721
APC: Only $99

ViewsDownloads

An Alternative and Fast Method of Nitrite Determination in Meat Sausages Using the PhotoMetrix® Smartphone Applicative for Digitized Image Processing

DOI: 10.4236/oalib.1108689, PP. 1-10

Subject Areas: Food Science & Technology, Analytical Chemistry

Keywords: PhotoMetrix®,, Nitrite, Food Analysis, Meat Sausages

Full-Text   Cite this paper   Add to My Lib

Abstract

Due to the potential threats of nitrite to public health and safety, in this work, we proposed, for the first time, the application of PhotoMetrix® software for the detection of nitrite in meat products. Nitrite monitoring in food matrices has been carried out by expensive analytical methods. Aiming mainly speed and cost reduction, colorimetric analysis software has been developed using digital imaging. Among them, the PhotoMetrix®, a free software based on templates univariate and multivariate mathematicians, has been standing out for its functionality. Herein, we evaluate the efficiency of PhotoMetrix® in the monitoring of nitrite concentration in meat sausages. The method was compatible with spectrophotometric data and showed a high correlation coefficient (r2 = 0.9940) for the Red channel, high selectivity and sensitivity (limit of detection = 0.02 mg·L-1). Besides, the nitrite values determined for different brands of meat sausages are in agreement with the Brazilian legislation (IN 51/2006). Thus, our findings indicate that the PhotoMetrix® software is a viable alternative for monitoring the quality of meat sausages.

Cite this paper

Almeida, G. A. , Demuner, A. J. , Blank, D. E. , Cerceau, C. I. , Sousa, B. L. , Demuner, I. F. , Coura, M. R. , Firmino, M. J. M. and Santos, M. H. (2022). An Alternative and Fast Method of Nitrite Determination in Meat Sausages Using the PhotoMetrix® Smartphone Applicative for Digitized Image Processing. Open Access Library Journal, 9, e8689. doi: http://dx.doi.org/10.4236/oalib.1108689.

References

[1]  Moorcroft, M.J., Davis, J. and Compton, R.G. (2011) Detection and Determination of Nitrate and Nitrite: A Review. Talanta, 54, 785-803. https://doi.org/10.1016/S0039-9140(01)00323-X
[2]  Gomes, A., Fernandes, E. and Lima, J.L.F.C. (2006) Use of Fluorescence Probes for Detection of Reactive Nitrogen Species: A Review. Journal of Fluorescence, 16, 119-139. https://doi.org/10.1007/s10895-005-0030-3
[3]  Ghosh, A., Das, P., Saha, S., Banerjee, T., Bhatt, H.B. and Das, A. (2011) Diamine Derivative of a Ruthenium(II)-Polypyridyl Complex for Chemodosimetric Detection of Nitrite Ion in Aqueous Solution. Inorganica Chimica Acta, 372, 115-119. https://doi.org/10.1016/j.ica.2011.01.066
[4]  Møller, J.K.S. and Skibsted, L.H. (2002) Nitric Oxide and Myoglobins. Chemical Reviews, 102, 1167-1178. https://doi.org/10.1021/cr000078y
[5]  Lewis Jr., W.M. and Morris, D.P. (1986) Toxicity of Nitrite to Fish: A Review. Transactions of the American Fisheries Society, 115, 183-195. https://doi.org/10.1577/1548-8659(1986)115<183:TONTF>2.0.CO;2
[6]  Cammack, R., Joannou, C.L., Cui, X., Martinez, C.T., Maraj, S.R. and Hughes, M.N. (1999) Nitrite and Nitrosyl Compounds in Food Preservation. Biochimica et Biophysica Acta (BBA)—Bioenergetics, 1411, 475-488. https://doi.org/10.1016/s0005-2728(99)00033-x
[7]  Wolff, I.A. and Wasserman, A.E. (1972) Nitrates, Nitrites, and Nitrosamines. Science, 177, 15-19. https://doi.org/10.1126/science.177.4043.15
[8]  Greer, F.R. and Shannon, M. (2005) Infant Methemoglobinemia: The Role of Dietary Nitrate in Food and Water. Pediatrics, 116, 784-786. https://doi.org/10.1542/peds.2005-1497
[9]  Brender, J.D., Olive, J.M., Felkner, M., Suarez, L., Marckwardt, W. and Hendricks, K.A. (2004) Dietary Nitrites and Nitrates, Nitrosatable Drugs, and Neural Tube Defects. Epidemiology, 15, 330-336. https://doi.org/10.1097/01.ede.0000121381.79831.7b
[10]  Juillet, Y., Dubois, C., Bintein, F., Dissard, J. and Bossée, A. (2014) Development and Validation of a Sensitive Thermal Desorption-Gas Chromatography-Mass Spectrometry (TDGC-MS) Method for the Determination of Phosgene in Air Samples. Analytical and Bioanalytical Chemistry, 406, 5137-5145. https://doi.org/10.1007/s00216-014-7809-5
[11]  He, L., Zhang, K., Wang, C., Luo, X. and Zhang, S. (2011) Effective Indirect Enrichment and Determination of Nitrite Ion in Water and Biological Samples Using Ionic Liquid-Dispersive Liquid–Liquid Microextraction Combined with High-Performance Liquid Chromatography. Journal of Chromatography A, 1218, 3595-3600. https://doi.org/10.1016/j.chroma.2011.04.014
[12]  Helaleh, M.I.H. and Korenaga, T. (2000) Ion Chromatographic Method for Simultaneous Determination of Nitrate and Nitrite in Human Saliva. Journal of Chromatography B: Biomedical Sciences and Applications, 744, 433-437. https://doi.org/10.1016/s0378-4347(00)00264-4
[13]  KodamatanI, H., Yamazaki, S., Saito, K., Komatsu, Y. and Tomiyasu, T. (2011) Rapid Method for Simultaneous Determination of Nitrite and Nitrate in Water Samples Using Short-Column Ion-Pair Chromatographic Separation, Photochemical Reaction, and Chemiluminescence Detection. Analytical Sciences, 27, 187-192.
[14]  Feng, D., Zhang, Y., Shi, W., Li, X. and Ma, H. (2010) A Simple and Sensitive Method for Visual Detection of Phosgene Based on the Aggregation of Gold Nanoparticles. Chemical Communications, 46, 9203-9205. https://doi.org/10.1039/c0cc02703k
[15]  Daniel, W.L., Han, M.S., Lee, J.S. and Mirkin, C.A. (2009) Colorimetric Nitrite and Nitrate Detection with Gold Nanoparticle Probes and Kinetic End Points. Journal of the American Chemical Society, 131, 6362-6363. https://doi.org/10.1021/ja901609k
[16]  Virji, S., Kojima, R., Fowler, J.D., Villanueva, J.G., Kaner, R.B. and Weiller, B.H. (2009) Polyaniline Nanofiber Composites with Amines: Novel Materials for Phosgene Detection. Nano Research, 2, 135-142. https://doi.org/10.1007/S12274-009-9011-1
[17]  Kung, C.K., Chang, T.H., Chou, L.Y., Hupp, J.T., Farha, O.K. and Ho, K.C. (2015) Porphyrin-Based Metal-Organic Framework Thin Films for Electrochemical Nitrite Detection. Electrochemistry Communications, 58, 51-56. https://doi.org/10.1016/j.elecom.2015.06.003
[18]  Manea, F., Remes, A., Radovan, C., Pode, R., Picken, S. and Schoonman, J. (2010) Simultaneous Electrochemical Determination of Nitrate and Nitrite in Aqueous Solution Using Ag-Doped Zeolite-Expanded Graphite-Epoxy Electrode. Talanta, 83, 66-71. https://doi.org/10.1016/j.talanta.2010.08.042
[19]  Li, D., Ma, Y., Duan, H., Deng, W. and Li, D. (2018) Griess Reaction-Based Paper Strip for Colorimetric/Fluorescent/SERS Triple Sensing of Nitrite. Biosensors and Bioelectronics, 99, 389-398. https://doi.org/10.1016/j.bios.2017.08.008
[20]  Xiang, G., Wang, Y., Zhang, H., Fan, H., Fan, L., He, L., Jiang, X. and Zhao, W. (2018) Carbon Dots Based Dual-Emission Silica Nanoparticles as Ratiometric Fluorescent Probe for Nitrite Determination in Food Samples. Food Chemistry, 260, 13-18. https://doi.org/10.1016/j.foodchem.2018.03.150
[21]  Erdogan, B. and Onar, A. (2011) Determination of Nitrates, Nitrites and Oxalates in Kale and Sultana Pea by Capillary Electrophoresis. Journal of Animal and Veterinary Advances, 10, 2051-2057. https://doi.org/10.3923/javaa.2011.2051.2057
[22]  Ayala, A., Leal, L., Ferrer, L. and Cerda, V. (2012) Multiparametric Automated System for Sulfate, Nitrite and Nitrate Monitoring in Drinking Water and Wastewater Based on Sequential Injection Analysis. Microchemical Journal, 100, 55-60. https://doi.org/10.1016/j.microc.2011.09.004
[23]  Bazani, E., Barreto, M., Demuner, A., Santos, M., Cerceau, C., Blank, D., Firmino, M., Souza, G., Franco, M., Suarez, W. and Stringheta, P. (2021) Smartphone Application for Total Phenols Content and Antioxidant Determination in Tomato, Strawberry, and Coffee Employing Digital Imaging. Food Analytical Methods, 14, 631-640. https://doi.org/10.1007/s12161-020-01907-z
[24]  Böck, F.C., Helfer, G.A., da Costa, A.B., Dessuy, M.B. and Ferrao, M.F. (2020) PhotoMetrix and Colorimetric Image Analysis Using Smartphones. Journal of Chemometrics, 34, e3251. https://doi.org/10.1002/cem.3251
[25]  Abdolmaleky, M., Naseri, M., Batle, J., Farouk, A. and Gong, L.H. (2016) Red-Green-Blue Multi-Channel Quantum Representation of Digital Images. Optik— International Journal for Light and Electron Optics, 128, 121-132. http://doi.org/10.1016/j.ijleo.2016.09.123
[26]  Helfer, G., Magnus, V., Böck, F., Teichmann, A., Ferrão, M. and Costa, A. (2017) PhotoMetrix: An Application for Univariate Calibration and Principal Components Analysis Using Colorimetry on Mobile Devices. Journal of the Brazilian Chemical Society, 28, 328-335. https://doi.org/10.5935/0103-5053.20160182
[27]  Filgueiras, M.F., de Jesus, P.C. and Borges, E.M. (2021) Quantification of Nitrite in Food and Water Samples Using the Griess Assay and Digital Images Acquired Using a Desktop Scanner. Journal of Chemical Education, 98, 3303-3311. https://doi.org/10.1021/acs.jchemed.0c01392
[28]  National Health Surveillance Agency (ANVISA) (2006) Resolution IN 51/2006— Normative Instruction number 51, December 29, 2006. Regulamento técnico de atribuição de aditivos e seus limites das seguintes categorias de alimentos: Categoria 8: Carne e produtos cárneos. Ministério da Agricultura, Pecuária e Abastecimento, Brasília.
[29]  National Health Surveillance Agency (ANVISA) (2003) Resolution-RE—Normative Instruction Number 899, May 29, 2003. Guia para validação de métodos analíticos e bioanalíticos.
[30]  Brazilian Association of Technical Standards (ABNT) (2005) NBR 14029: Agrotóxicos e afins—Validação de métodos analíticos. Rio de Janeiro.
[31]  Oliveira, J., Silva, U., Pastore, V., Azevedo, E., Campos, G., Silva, F., Raghiante, F. and Martins, O. (2017) Determinação espectrofotométrica de nitrito em produtos cárneos embutidos. Revista Brasileira de Higiene e Sanidade Animal, 11, 19-31. https://doi.org/10.5935/1981-2965.20170003
[32]  Cerrato-Alvarez, M., Frutos-Puerto, S., Miro-Rodríguez, C. and Pinilla-Gil, E. (2020) Measurement of Tropospheric Ozone by Digital Image Analysis of Indigotrisulfonate-Impregnated Passive Sampling Pads Using a Smartphone Camera. Microchemical Journal, 154, Article ID: 104535. https://doi.org/10.1016/j.microc.2019.104535
[33]  Neto, G.F.S., Fonseca, A. and Braga, J.W.B. (2016) Classification of Mineral Waters Based on Digital Images Acquired by Smartphones. Química Nova, 39, 876-881. https://doi.org/10.5935/0100-4042.20160088

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413