全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

The Research Progress on Cocrystals of Flavonoids

DOI: 10.4236/oalib.1108320, PP. 1-18

Subject Areas: Chemical Engineering & Technology

Keywords: Flavonoids, Cocrystal Technology, Traditional Chinese Medicine, Hydrogen Bond, Drug Absorption, Bioavailability

Full-Text   Cite this paper   Add to My Lib

Abstract

Flavonoids are an important class of natural organic compounds that widely exist in nature and have rich medicinal value. Cocrystal technology is an effective method to improve the solubility of insoluble flavonoids. The cocrystal formers and the hydroxyl groups in the flavonoid compound form a new crystal structure through hydrogen bonding, and the original lattice packing and molecular arrangement have changed. On the premise of not changing the active ingredients of the drug, the solubility of the drug is improved, thereby improving the drug absorption and increasing the bioavailability. This article reviews the research progress of drug cocrystals of flavonoids, and provides a reference for the application of flavonoids in medicine.

Cite this paper

Xia, Y. , Xu, R. and Jiang, C. (2022). The Research Progress on Cocrystals of Flavonoids. Open Access Library Journal, 9, e8320. doi: http://dx.doi.org/10.4236/oalib.1108320.

References

[1]  Zhao, X.Y., Chen, J., Fang, J.G., et al. (2018) Study Progress on Antiviral Activities and Mechanisms of Flavonoids in Traditional Chinese Medicine and Natural Medicines. Herald of Medicine, 37, 410-415.
[2]  Quan, C., Yao, H. and Hou, C. (2013) Certification and Uncertainty Evaluation of Flavonoids Certified Reference Materials. Agricultural Sciences, 4, 89-96. https://doi.org/10.4236/as.2013.49B016
[3]  Lu, X. and Jiang, C.J. (2019) Research Progress on Cocrystal of Flavonoids. Herald of Medicine, 38, 921-926.
[4]  Zhang, Z., Li, D., Luo, C., et al. (2019) Cocrystals of Natural Products: Improving the Dissolution Performance of Flavonoids Using Betaine. Crystal Growth & Design, 19, 3851-3859. https://doi.org/10.1021/acs.cgd.9b00294
[5]  Kumari, N. and Ghosh, A. (2020) Cocrystallization: Cutting Edge Tool for Physicochemical Modulation of Active Pharmaceutical Ingredients. Current Pharmaceutical Design, 26, 4858-4882. https://doi.org/10.2174/1381612826666200720114638
[6]  Zhou, X.B., Wu, S.X., Sun, M.Y., et al. (2016) Research Progress on Co-Crystals of Insoluble Active Ingredients of Chinese Materia Medica. Chinese Herbal Medicines, 47, 336-343.
[7]  Zhang, Y.N., Yin, H.M., Zhang, Y., et al. (2015) Synthesis and Characterization of Pharmaceutical Co-Crystal of Luteolin with 4,4’-Dipyridy. Journal of Northeast Agricultural University, 46, 72-78.
[8]  He, H.Y., Huang, Y., Zhang, Q., et al. (2016) Zwitterionic Cocrystals of Flavonoids and Proline: Solid-State Characterization, Pharmaceutical Properties and Pharmacokinetic Performance. Crystal Growth & Design, 16, 2348-2356. https://doi.org/10.1021/acs.cgd.6b00142
[9]  Luo, Y., Chen, S., Zhou, J., et al. (2019) Luteolin Cocrystals: Characterization, Evaluation of Solubility, Oral Bioavailability and Theoretical Calculation. Journal of Drug Delivery Science and Technology, 50, 248-254. https://doi.org/10.1016/j.jddst.2019.02.004
[10]  Xin, W.Y., Song, J.K., He, G.R., et al. (2013) Progress in Pharmacological Study and the Underlying Mechanism of Baicalein and Baicalin. Chinese Journal of New Drugs, 22, 647-659.
[11]  Zhu, B., Zhang, Q., Wang, J.R., et al. (2017) Cocrystals of Baicalein with Higher Solubility and Enhanced Bioavailability. Crystal Growth & Design, 17, 1893-1901. https://doi.org/10.1021/acs.cgd.6b01863
[12]  Chadha, R., Bhalla, Y., Nandan, A., et al. (2017) Chrysin Cocrystals: Characterization and Evaluation. Journal of Pharmaceutical and Biomedical Analysis, 134, 361-371. https://doi.org/10.1016/j.jpba.2016.10.020
[13]  Sowa, M., Slepokura, K. and Matczak-Jon, E. (2013) A 1:2 Cocrystal of Genistein with Isonicotinamide: Crystal Structure and Hirshfeld Surface Analysis. Acta Crystallographica Section C—Structural Chemistry, 69, 1267-1272. https://doi.org/10.1107/S0108270113029545
[14]  Sowa, M., Slepokura, K. and Matczak-Jon, E. (2014) Solid-State Characterization and Solubility of a Genistein-Caffeine Cocrystal. Journal of Molecular Structure, 1076, 80-88. https://doi.org/10.1016/j.molstruc.2014.07.036
[15]  Zhang, T.N., Yin, H.M., Zhang, Y., et al. (2017) Preparation of a 1:1 Cocrystal of Genistein with 4,4’-Bipyridine. Journal of Crystal Growth, 458, 103-109. https://doi.org/10.1016/j.jcrysgro.2016.10.084
[16]  Gao, D.D., Zhang, L.L., Chen, J.L., et al. (2020) Effect of Daidzein on Differentiation of Human Osteoblast-Like MG-63 Cells and Its Molecular Mechanism. Medical & Pharmaceutical Journal of Chinese People’s Liberation Army, 32, 10-14.
[17]  Bhalla, Y., Chadha, K., Chadha, R., et al. (2019) Daidzein Cocrystals: An Opportunity to Improve Its Biopharmaceutical Parameters. Heliyon, 5, e02669. https://doi.org/10.1016/j.heliyon.2019.e02669
[18]  Chadha, K., Karan, M., Bhalla, Y., et al. (2017) Cocrystals of Hesperitin: Structural, Pharmacokinetic, and Pharmacodynamic Evaluation. Crystal Growth & Design, 17, 2386-2405. https://doi.org/10.1021/acs.cgd.6b01769
[19]  Kanaze, F.I., Bounartzi, M.I., Georgarakis, M., et al. (2007) Pharmacokinetics of the Citrus Flavanone Aglycones Hesperetin and Naringenin after Single Oral Administration in Human Subjects. European Journal of Clinical Nutrition, 61, 472-477. https://doi.org/10.1038/sj.ejcn.1602543
[20]  Liang, S.J., Zhou, S.Y., Yang, S.T., et al. (2017) Thermodynamic Studies of Naringenin-Isonicotinamide Cocrystals. Acta Pharmaceutica Sinica, 52, 625-633.
[21]  Cui, W.X., He, Z.H., Zhang, Y.T., et al. (2019) Naringenin Cocrystals Prepared by Solution Crystallization Method for Improving Bioavailability and Anti-Hyperlipidemia Effects. AAPS PharmSciTech, 20, 115. https://doi.org/10.1208/s12249-019-1324-0
[22]  Khandavilli, U.B.R., Skorepová, E., Sinha, A.S., et al. (2018) Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Crystal Growth & Design, 18, 4571-4577. https://doi.org/10.1021/acs.cgd.8b00557
[23]  Zhou, F., Zhou, J., Zhang, H., et al. (2019) Structure Determination and in Vitro/Vivo Study on Carbamazepinenaringenin (1:1) Cocrystal. Journal of Drug Delivery Science and Technology, 54, Article ID: 101244. https://doi.org/10.1016/j.jddst.2019.101244
[24]  Lee, C.C., Cho, A.Y., Yoon, W., et al. (2019) Cocrystal Formation via Resorcinol-Urea Interactions: Naringenin and Carbamazepine. Crystal Growth & Design, 19, 3807-3814. https://doi.org/10.1021/acs.cgd.9b00269
[25]  Veverka, M., Dubaj, T., Gallovic, J., et al. (2015) Cocrystals of Quercetin: Synthesis, Characterization, and Screening of Biological Activity. Monatshefte für Chemie, 146, 99-109. https://doi.org/10.1007/s00706-014-1314-6
[26]  Wu, N., Zhang, Y., Ren, J., et al. (2020) Preparation of Quercetin-Nicotinamide Cocrystals and Their Evaluation under in Vivo and in Vitro Conditions. RSC Advances, 10, 21852-21859. https://doi.org/10.1039/D0RA03324C
[27]  Yao, Y., Lin, G., Xie, Y., et al. (2014) Preformulation Studies of Myricetin: A Natural Antioxidant Flavonoid. Pharmazie, 69, 19-26.
[28]  Xu, J.J., Wei, Y.F., Qian, S., et al. (2016) Preparation of Myricetin-Caffeine Cocrystal and Its Single Crystal Analysis. Journal of China Pharmaceutical University, 47, 324-328.
[29]  Hong, C., Xie, Y., Yao, Y., et al. (2015) A Novel Strategy for Pharmaceutical Cocrystal Generation without Knowledge of Stoichiometric Ratio: Myricetin Cocrystals and a Ternary Phase Diagram. Pharmaceutical Research, 32, 47-60. https://doi.org/10.1007/s11095-014-1443-y
[30]  Liu, M., Hong, C., Yao, Y., et al. (2016) Development of a Pharmaceutical Cocrystal with Solution Crystallization Technology: Preparation, Characterization, and Evaluation of Myricetin-Proline Cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 107, 151-159. https://doi.org/10.1016/j.ejpb.2016.07.008
[31]  Wang, C., Tong, Q., Hou, X., et al. (2016) Enhancing Bioavailability of Dihydromyricetin through Inhibiting Precipitation of Soluble Cocrystals by a Crystallization Inhibitor. Crystal Growth & Design, 16, 5030-5039. https://doi.org/10.1021/acs.cgd.6b00591
[32]  Li, P., Ramaiah, T., Zhang, M., et al. (2019) Two Cocrystals of Berberine Chloride with Myricetin and Dihydromyricetin: Crystal Structures, Characterization and Anti-Tumor Activities. Crystal Growth & Design, 20, 157-166. https://doi.org/10.1021/acs.cgd.9b00939
[33]  Bhalla, Y., Chadha, R., Chadha, K., et al. (2019) Crystal Engineering of Fisetin: A Step towards Improved Biopharmaceutical Parameters. Journal of Food Science & Technology, 4, 597-613. https://doi.org/10.25177/JFST.4.2.RA.461
[34]  Su, X., Zhang, Y., Yin, H., et al. (2018) Preparation of a 1:1.5 Cocrystal of Kaempferol with 4,4’-Bipyridine Based on Analyzing Intermolecular Interaction of Building Units. Journal of Molecular Structure, 1177, 107-116. https://doi.org/10.1016/j.molstruc.2018.09.050
[35]  He, X.L., Liu, Z.H., Wu, Y., et al. (2020) Preparation of Phloretin Inclusion Complex and Its Anti-Tumor Activity in Vitro. Journal of Hubei University of Chinese Medicine, 22, 48-51.
[36]  Zhang, J.J., Qian, S. and Gao Y. (2019) The Theory and Application of Crystal Drug Development. Chemical Industry Press, Beijing, 162.
[37]  Smith, A.J., Padmini, K., Arora, K.K., et al. (2013) Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats. Molecular Pharmaceutics, 10, 2948-2961. https://doi.org/10.1021/mp4000794
[38]  Spizzirri, U.G., Carullo, G., Cicco, L.D., et al. (2019) Synthesis and Characterization of a ( )-catechin and L-( )-ascorbic Acid Cocrystal as a New Functional Ingredient for Tea Drinks. Heliyon, 5, e02291. https://doi.org/10.1016/j.heliyon.2019.e02291

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133