Flavonoids are an important class of natural organic compounds that widely exist in nature and have rich medicinal value. Cocrystal technology is an effective method to improve the solubility of insoluble flavonoids. The cocrystal formers and the hydroxyl groups in the flavonoid compound form a new crystal structure through hydrogen bonding, and the original lattice packing and molecular arrangement have changed. On the premise of not changing the active ingredients of the drug, the solubility of the drug is improved, thereby improving the drug absorption and increasing the bioavailability. This article reviews the research progress of drug cocrystals of flavonoids, and provides a reference for the application of flavonoids in medicine.
Cite this paper
Xia, Y. , Xu, R. and Jiang, C. (2022). The Research Progress on Cocrystals of Flavonoids. Open Access Library Journal, 9, e8320. doi: http://dx.doi.org/10.4236/oalib.1108320.
Zhao, X.Y., Chen, J., Fang, J.G., et al. (2018) Study Progress on Antiviral Activities and Mechanisms of Flavonoids in Traditional Chinese Medicine and Natural Medicines. Herald of Medicine, 37, 410-415.
Quan, C., Yao, H. and Hou, C. (2013) Certification and Uncertainty Evaluation of Flavonoids Certified Reference Materials. Agricultural Sciences, 4, 89-96.
https://doi.org/10.4236/as.2013.49B016
Zhang, Z., Li, D., Luo, C., et al. (2019) Cocrystals of Natural Products: Improving the Dissolution Performance of Flavonoids Using Betaine. Crystal Growth & Design, 19, 3851-3859. https://doi.org/10.1021/acs.cgd.9b00294
Kumari, N. and Ghosh, A. (2020) Cocrystallization: Cutting Edge Tool for Physicochemical Modulation of Active Pharmaceutical Ingredients. Current Pharmaceutical Design, 26, 4858-4882.
https://doi.org/10.2174/1381612826666200720114638
Zhou, X.B., Wu, S.X., Sun, M.Y., et al. (2016) Research Progress on Co-Crystals of Insoluble Active Ingredients of Chinese Materia Medica. Chinese Herbal Medicines, 47, 336-343.
Zhang, Y.N., Yin, H.M., Zhang, Y., et al. (2015) Synthesis and Characterization of Pharmaceutical Co-Crystal of Luteolin with 4,4’-Dipyridy. Journal of Northeast Agricultural University, 46, 72-78.
Luo, Y., Chen, S., Zhou, J., et al. (2019) Luteolin Cocrystals: Characterization, Evaluation of Solubility, Oral Bioavailability and Theoretical Calculation. Journal of Drug Delivery Science and Technology, 50, 248-254.
https://doi.org/10.1016/j.jddst.2019.02.004
Xin, W.Y., Song, J.K., He, G.R., et al. (2013) Progress in Pharmacological Study and the Underlying Mechanism of Baicalein and Baicalin. Chinese Journal of New Drugs, 22, 647-659.
Chadha, R., Bhalla, Y., Nandan, A., et al. (2017) Chrysin Cocrystals: Characterization and Evaluation. Journal of Pharmaceutical and Biomedical Analysis, 134, 361-371. https://doi.org/10.1016/j.jpba.2016.10.020
Sowa, M., Slepokura, K. and Matczak-Jon, E. (2013) A 1:2 Cocrystal of Genistein with Isonicotinamide: Crystal Structure and Hirshfeld Surface Analysis. Acta Crystallographica Section C—Structural Chemistry, 69, 1267-1272.
https://doi.org/10.1107/S0108270113029545
Sowa, M., Slepokura, K. and Matczak-Jon, E. (2014) Solid-State Characterization and Solubility of a Genistein-Caffeine Cocrystal. Journal of Molecular Structure, 1076, 80-88. https://doi.org/10.1016/j.molstruc.2014.07.036
Zhang, T.N., Yin, H.M., Zhang, Y., et al. (2017) Preparation of a 1:1 Cocrystal of Genistein with 4,4’-Bipyridine. Journal of Crystal Growth, 458, 103-109.
https://doi.org/10.1016/j.jcrysgro.2016.10.084
Gao, D.D., Zhang, L.L., Chen, J.L., et al. (2020) Effect of Daidzein on Differentiation of Human Osteoblast-Like MG-63 Cells and Its Molecular Mechanism. Medical & Pharmaceutical Journal of Chinese People’s Liberation Army, 32, 10-14.
Bhalla, Y., Chadha, K., Chadha, R., et al. (2019) Daidzein Cocrystals: An Opportunity to Improve Its Biopharmaceutical Parameters. Heliyon, 5, e02669.
https://doi.org/10.1016/j.heliyon.2019.e02669
Chadha, K., Karan, M., Bhalla, Y., et al. (2017) Cocrystals of Hesperitin: Structural, Pharmacokinetic, and Pharmacodynamic Evaluation. Crystal Growth & Design, 17, 2386-2405. https://doi.org/10.1021/acs.cgd.6b01769
Kanaze, F.I., Bounartzi, M.I., Georgarakis, M., et al. (2007) Pharmacokinetics of the Citrus Flavanone Aglycones Hesperetin and Naringenin after Single Oral Administration in Human Subjects. European Journal of Clinical Nutrition, 61, 472-477.
https://doi.org/10.1038/sj.ejcn.1602543
Khandavilli, U.B.R., Skorepová, E., Sinha, A.S., et al. (2018) Cocrystals and a Salt of the Bioactive Flavonoid: Naringenin. Crystal Growth & Design, 18, 4571-4577.
https://doi.org/10.1021/acs.cgd.8b00557
Zhou, F., Zhou, J., Zhang, H., et al. (2019) Structure Determination and in Vitro/Vivo Study on Carbamazepinenaringenin (1:1) Cocrystal. Journal of Drug Delivery Science and Technology, 54, Article ID: 101244.
https://doi.org/10.1016/j.jddst.2019.101244
Veverka, M., Dubaj, T., Gallovic, J., et al. (2015) Cocrystals of Quercetin: Synthesis, Characterization, and Screening of Biological Activity. Monatshefte für Chemie, 146, 99-109. https://doi.org/10.1007/s00706-014-1314-6
Wu, N., Zhang, Y., Ren, J., et al. (2020) Preparation of Quercetin-Nicotinamide Cocrystals and Their Evaluation under in Vivo and in Vitro Conditions. RSC Advances, 10, 21852-21859. https://doi.org/10.1039/D0RA03324C
Xu, J.J., Wei, Y.F., Qian, S., et al. (2016) Preparation of Myricetin-Caffeine Cocrystal and Its Single Crystal Analysis. Journal of China Pharmaceutical University, 47, 324-328.
Hong, C., Xie, Y., Yao, Y., et al. (2015) A Novel Strategy for Pharmaceutical Cocrystal Generation without Knowledge of Stoichiometric Ratio: Myricetin Cocrystals and a Ternary Phase Diagram. Pharmaceutical Research, 32, 47-60.
https://doi.org/10.1007/s11095-014-1443-y
Liu, M., Hong, C., Yao, Y., et al. (2016) Development of a Pharmaceutical Cocrystal with Solution Crystallization Technology: Preparation, Characterization, and Evaluation of Myricetin-Proline Cocrystals. European Journal of Pharmaceutics and Biopharmaceutics, 107, 151-159. https://doi.org/10.1016/j.ejpb.2016.07.008
Wang, C., Tong, Q., Hou, X., et al. (2016) Enhancing Bioavailability of Dihydromyricetin through Inhibiting Precipitation of Soluble Cocrystals by a Crystallization Inhibitor. Crystal Growth & Design, 16, 5030-5039.
https://doi.org/10.1021/acs.cgd.6b00591
Li, P., Ramaiah, T., Zhang, M., et al. (2019) Two Cocrystals of Berberine Chloride with Myricetin and Dihydromyricetin: Crystal Structures, Characterization and Anti-Tumor Activities. Crystal Growth & Design, 20, 157-166.
https://doi.org/10.1021/acs.cgd.9b00939
Bhalla, Y., Chadha, R., Chadha, K., et al. (2019) Crystal Engineering of Fisetin: A Step towards Improved Biopharmaceutical Parameters. Journal of Food Science & Technology, 4, 597-613. https://doi.org/10.25177/JFST.4.2.RA.461
Su, X., Zhang, Y., Yin, H., et al. (2018) Preparation of a 1:1.5 Cocrystal of Kaempferol with 4,4’-Bipyridine Based on Analyzing Intermolecular Interaction of Building Units. Journal of Molecular Structure, 1177, 107-116.
https://doi.org/10.1016/j.molstruc.2018.09.050
He, X.L., Liu, Z.H., Wu, Y., et al. (2020) Preparation of Phloretin Inclusion Complex and Its Anti-Tumor Activity in Vitro. Journal of Hubei University of Chinese Medicine, 22, 48-51.
Smith, A.J., Padmini, K., Arora, K.K., et al. (2013) Crystal Engineering of Green Tea Epigallocatechin-3-gallate (EGCg) Cocrystals and Pharmacokinetic Modulation in Rats. Molecular Pharmaceutics, 10, 2948-2961. https://doi.org/10.1021/mp4000794
Spizzirri, U.G., Carullo, G., Cicco, L.D., et al. (2019) Synthesis and Characterization of a ( )-catechin and L-( )-ascorbic Acid Cocrystal as a New Functional Ingredient for Tea Drinks. Heliyon, 5, e02291. https://doi.org/10.1016/j.heliyon.2019.e02291