全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

COVID-19: From Cough to Coffin

DOI: 10.4236/oalib.1108300, PP. 1-24

Subject Areas: Pathology

Keywords: CD147, CD8, Lectin, Glycan, Epitope, Angioedema

Full-Text   Cite this paper   Add to My Lib

Abstract

The primary determinants of Covid severity are ACE genotype, the falciparum antigen (CD147), and vitamin D status. Specifically the I (insertion) and D (deletion) alleles, ACE polymorphisms determine the balance between the RAS (Renin Angiotensin System) and the KKS (Kallikrein Kinin System) in the response to SARS CoV2 (SARS2). CD147, the falciparum antigen, mediates the damage. Vitamin D modulates the immune response. The RAS and KKS connect Covid-19 to Kawasaki’s Disease (KD) and Toxic Shock Syndrome (TSS). Covid-19 pathogenesis is embroiled in a nature versus nurture debate, as it seems to target people of color, unless you live in sub Saharan Africa. There are only three plausible explanations for the latter and they have all been selectively ignored/suppressed by mainstream medicine. This article speaks to the genotypic nature of Covid-19. Angiotensin II, bradykinin, ACE2, ACE and its two polymorphic alleles play vital roles. They predict disease severity. They portend the ARDS variants. They portend extra pulmonary disease or not. The heavily glycosylated CD147 epitope on the spike protein S is key. It has been dismissed as non-existent by flawed studies. Yet its interaction with CD147 receptors on erythrocytes and T lymphocytes cannot be denied and is at the heart of the myocarditis conundrum. Using this key, multiple dots are connected and a red alert issued, whether Covid-19 or vaccine related. These include thrombosis, immune deficit, cancer progression, autoimmune disease, and ADE (Antibody Dependent Enhancement) for those at risk. In susceptible vaccinees its deleterious effects are accelerated. Assessment of this and preventative approaches are explored.

Cite this paper

Chambers, P. W. (2022). COVID-19: From Cough to Coffin. Open Access Library Journal, 9, e8300. doi: http://dx.doi.org/10.4236/oalib.1108300.

References

[1]  Gosangi, B., Rubinowitz, A.N., Irugu, D., Gange, C., Bader, A. and Cortopassi, I. (2021) COVID-19 ARDS: A Review of Imaging Features and Overview of Mechanical Ventilation and Its Complications. Emergency Radiology. https://doi.org/10.1007/s10140-021-01976-5
[2]  Welker, C., Huang, J., Gil, I.N. and Ramakrishna, H. (2021) Acute Respiratory Distress Syndrome Update, with Coronavirus Disease 2019 Focus. Journal of Cardiothoracic and Vascular Anesthesia, 1-8. (In Press) https://doi.org/10.1053/j.jvca.2021.02.053
[3]  van De Veerdonk, F.L., Netea, M.G., van Deuren, M., van der Meer, J.W.M., De Mast, Q., et al. (2020) KKS Blockade in Patients with COVID-19 to Prevent Acute Respiratory Distress Syndrome (Apr 2020). ELife, 9, Article ID: E57555. https://doi.org/10.7554/eLife.57555
[4]  Garvin, M.R., Alvarez, C., Miller, J.I., Prates, E.T. and Walker, A.M. (2020) A Mechanistic Model and Therapeutic Interventions for COVID-19 Involving a RAS Mediated Bradykinin Storm. ELife, 9, Article ID: E59177. https://doi.org/10.7554/eLife.59177
[5]  Middleton, E.A. and Zimmerman, G.A. (2021) COVID-19-Associated Acute Respiratory Distress Syndrome: Lessons from Tissues and Cells. Critical Care Clinics, 37, 777-793. https://doi.org/10.1016/j.ccc.2021.05.004
[6]  Science Daily (2021, April 15) Two Distinct Types of COVID-19-Associated Acute Respiratory Distress Syndrome Identified. https://www.sciencedaily.com/releases/2021/04/210415090727.htm
[7]  Volpe, M., Battistoni, A. and Mancia, G. (2016) Angiotensin II-Linked Hypothesis to Understand the Advantage of the Coevolution of Hypertension and Malaria. Circulation Research, 119, 1046-1048. https://doi.org/10.1161/CIRCRESAHA.116.309855
[8]  Gallego-Delgado, J., Walther, T. and Rodriguez, A. (2016) The High Blood Pressure-Malaria Protection Hypothesis. Circulation Research, 119, 1071-1075. https://doi.org/10.1161/CIRCRESAHA.116.309602
[9]  Biller, H., Zissel, G., Ruprecht, B., Nauck, M., Busse Grawitz, A. and Müller-Quernheim, J. (2006) Genotype-Corrected Reference Values for Serum Angiotensin-Converting Enzyme. European Respiratory Journal, 28, 1085-1091. https://doi.org/10.1183/09031936.00050106
[10]  Rigat, B., Corvol, P. and Soubrier, F. (1990) An Insertion/deletion Polymorphism in the Angiotensin I-Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels. Journal of Clinical Investigation, 86, 343-1346. https://doi.org/10.1172/JCI114844
[11]  Radzikowska, U., Ding, M., Tan, G., Zhakparov, D., Peng, Y., Wawrzyniak, P., et al. (2020) Distribution of ACE2, CD147, CD26, and Other SARS-CoV-2 Associated Molecules in Tissues and Immune Cells in Health and in Asthma, COPD, Obesity, Hypertension, and COVID-19 Risk Factors. Allergy, 75, 2828-2845. https://doi.org/10.1111/all.14429
[12]  Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.K., et al. (2020) Platelet Gene Expression and Function in Patients with COVID-19. Blood, 136, 1317-1329. https://doi.org/10.1182/blood.2020007214
[13]  McCracken, I.R., Saginc, G., He, L., Huseynov, A., Daniels, A., et al. (2021) Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation, 143, 865-868. https://doi.org/10.1161/CIRCULATIONAHA.120.052824
[14]  Ganier, C., Du-Harpur, X., Harun, N., Wan, B., Arthurs, C., et al. (2020) CD147 (BSG) But Not ACE2 Expression Is Detectable in Vascular Endothelial Cells Within Single Cell RNA Sequencing Datasets Derived from Multiple Tissues in Healthy Individuals (bioRxiv Preprint). https://doi.org/10.1101/2020.05.29.123513
[15]  Zwaveling, S., van Wijk, R.G. and Karim, F. (2020) Pulmonary Edema in COVID-19: Explained by Bradykinin? Journal of Allergy and Clinical Immunology, 146, 1454-1455. https://doi.org/10.1016/j.jaci.2020.08.038
[16]  Takahashi, T., Yamaguchi, E., Furuya, K. and Kawakami, Y. (2001) The ACE Gene Polymorphism and Cough Threshold for Capsaicin after Cilazapril Usage. Respiratory Medicine, 95, 130-135. https://doi.org/10.1053/rmed.2000.1005
[17]  Bas, M., Hoffmann, T.K., Tiemann, B., Thao-Vi Dao, V., Bantis, C., et al. (2010) Potential Genetic Risk Factors in Angiotensin-Converting Enzymeinhibitor-Induced Angio-Edema. British Journal of Clinical Pharmacology, 69, 179-186. https://doi.org/10.1111/j.1365-2125.2009.03567.x
[18]  Mukae, S., Itoh, S., Aoki, S., Iwata, T., Nishio, K., Sato, R., et al. (2002) Association of Polymorphisms of the Renin-Angiotensin System and Bradykinin B2 Receptor with ACE-Inhibitor-Related Cough. Journal of Human Hypertension, 16, 857-863. https://doi.org/10.1038/sj.jhh.1001486
[19]  Vahey, G.M., Marshall, K.E., McDonald, E., Martin, S.W., Tate, J.E., et al. (2021). Symptom Profiles and Progression in Hospitalized and Nonhospitalized Patients with Coronavirus Disease, Colorado, USA, 2020. Emerging Infectious Diseases, 27, 385-395. https://doi.org/10.3201/eid2702.203729
[20]  Raveendran, A.V., Jayadevan, R. and Sashidharan, S. (2021) Long COVID: An Overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, 869-875. https://doi.org/10.1016/j.dsx.2021.04.007
[21]  Gallagher, P.E., Li, P., Lenhart, J.R., Chappell, M.C., Bridget, K., et al. (1999) Estrogen Regulation of Angiotensin-Converting Enzyme MRNA. Hypertension, 33, 323-328. https://doi.org/10.1161/01.HYP.33.1.323
[22]  Graham, E.L., Clark, J.R., Orban, Z.S., Lim, P.H., Szymanski, A.L., et al. (2021) Persistent Neurologic Symptoms and Cognitive Dysfunction in Nonhospitalized Covid19 “long Haulers”. Annals of Clinical and Translational Neurology, 8, 1073-1085. https://doi.org/10.1002/acn3.51350
[23]  Becker, J.H., Lin, J.J., Doernberg, M., Stone, K., Navis, A., Festa, J.R., et al. (2021) Assessment of Cognitive Function in Patients after COVID-19 Infection. JAMA Network Open, 4, Article ID: E2130645. https://doi.org/10.1001/jamanetworkopen.2021.30645
[24]  Brusco, I., Justino, A.B., Silva, C.S., Fischer, S., Cunha, T.M, et al. (2019) Kinins and Their B1 and B2 Receptors Are Involved in Fibromyalgia-Like Pain Symptoms in Mice. Biochemical Pharmacology, 168, 119-132. https://doi.org/10.1016/j.bcp.2019.06.023
[25]  Joshi, S., Gomez, S., Duran-Mendez, M., Quiroz-Olvera, J., Garcia, C., et al. (2019) Aging Healthy, Or with Diabetes, Is Associated with ACE2/ACE Imbalance in the Hematopoietic Stem Progenitor Cells. The FASEB Journal, 33, 514.7-514.7. https://doi.org/10.1096/fasebj.2019.33.1_supplement.514.7
[26]  Bank, S., Kumar De, S., Bankura, B., Maiti, S., Das, M., et al. (2021) ACE/ACE2 Balance Might Be Instrumental to Explain the Certain Comorbidities Leading to Severe COVID-19 Cases. Bioscience Reports, 41, Article ID: BSR20202014. https://doi.org/10.1042/BSR20202014
[27]  Diorio, C., Henrickson, S.E., Vella, L.A., McNerney, K.O., Chase, J., et al. (2020) Multisystem Inflammatory Syndrome in Children and COVID-19 Are Distinct Presentations of SARS–CoV-2. Journal of Clinical Investigation, 130, 5967-5975. https://doi.org/10.1172/JCI140970
[28]  Mirabito, K.M., Hilliard, L.M., Kett, M.M., Brown, R.D., Booth, S.C., et al. (2014) Sex- and Age-Related Differences in the Chronic Pressure Natriuresis Relationship: Role of the Angiotensin Type 2 Receptor. American Journal of Physiology—Renal Physiology, 307, F901-F907. https://doi.org/10.1152/ajprenal.00288.2014
[29]  Feng, W., Xu, X., Zhao, G., Zhao, J. and Dong, R. (2016) Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor Deficient Mice. The Journals of Gerontology: Series A, 71, 178-187. https://doi.org/10.1093/gerona/glu210
[30]  Abadir, P.M., Periasamy, A., Carey, R.M. and Siragy, H.M. (2006) Angiotensin II Type 2 Receptor-Bradykinin B2 Receptor Functional Heterodimerization. Hypertension, 48, 316-322. https://doi.org/10.1161/01.HYP.0000228997.88162.a8
[31]  Fernandes, F.B., Fernandes, A.B., Febba, A.C.S., Leite, A.P.O., Leite, C.A., Vitalle, M.S.S., et al. (2021) Association of Ang-(1-7) and Des-Arg9BK as New Biomarkers of Obesity and Cardiometabolic Risk Factors in Adolescents. Hypertension Research, 44, 969-977. https://doi.org/10.1038/s41440-021-00618-0
[32]  Yanes Cardozo, L.L. and Romero, D.G. (2021) Novel Biomarkers of Childhood and Adolescent Obesity. Hypertension Research, 44, 1030-1033. https://doi.org/10.1038/s41440-021-00651-z
[33]  Rafferty, M.S., Burrows, H., Joseph, J.P., Leveille, J., Nihtianova, S. and Amirian, S. (2021) Multisystem Inflammatory Syndrome in Children (MIS-C) and the Coronavirus Pandemic: Current Knowledge and Implications for Public Health. Journal of Infection and Public Health, 14, 484-494. https://doi.org/10.1016/j.jiph.2021.01.008
[34]  Most, Z.M., Hendren, N., Drazner, M.H. and Perl, T.M. (2021) Striking Similarities of Multisystem Inflammatory Syndrome in Children and a Myocarditis-Like Syndrome in Adults. Circulation, 143, 4-6. https://doi.org/10.1161/CIRCULATIONAHA.120.050166
[35]  Berger, A. (2000) T Lymphocytes Are a Major Source of Cytokines. BMJ, 321, 424. https://doi.org/10.1136/bmj.321.7258.424
[36]  Maalmi, H., Berraïes, A., Tanguouru, E., Ammar, J., Abid, H., et al. (2012) The Impact of Vitamin D Deficiency on Immune T Cells in Asthmatic Children: A Case-Control Study. Journal of Asthma and Allergy, 5, 11-19. https://doi.org/10.2147/JAA.S29566
[37]  Pavel, A., Glickman, J.W., Michels, J.R., Kim-Schultze, S., Miller, R.L., et al. (2021) Th2/Th1 Cytokine Imbalance Is Associated with Higher COVID-19 Risk Mortality. Frontiers in Genetics, 12, Article ID: 706902. https://doi.org/10.3389/fgene.2021.706902
[38]  Sriskandan, S. and Cohen, J. (2000) Kallikrein-Kinin System Activation in Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 30, 961-962. https://doi.org/10.1086/313827
[39]  Bengtson, S.H., Phagoo, S.B., Norrby-Teglund, A., Pahlman, L., Mörgelin, M., et al. (2006) Kinin Receptor Expression during Staphylococcus aureus Infection. Blood, 108, 2055-2063. https://doi.org/10.1182/blood-2006-04-016444
[40]  Patel, P., DeCuir, J., Abrams, J., Campbell, A.P., Godfred-Cato, S. and Belay, E.D. (2021) Clinical Characteristics of Multisystem Inflammatory Syndrome in Adults a Systematic Review. JAMA Network Open, 4, Article ID: E2126456. https://doi.org/10.1001/jamanetworkopen.2021.26456
[41]  Fodil, S. and Annane, D. (2021) Complement Inhibition and COVID-19: the Story So Far. ImmunoTargets and Therapy, 10, 273-284. https://doi.org/10.2147/ITT.S284830
[42]  Biezeveld, M.H., Kuipers, I.M., Geissler, J., Lam, J., Ottenkamp, J.J., et al. (2003) Association of Mannose-Binding Lectin Genotype with Cardiovascular Abnormalities in Kawasaki Disease. The Lancet, 361, 1268-1270. https://doi.org/10.1016/S0140-6736(03)12985-6
[43]  Polycarpou, A., Grigoriadou, S., Klavinskis, L. and Sacks, S. (2021) Does the Lectin Complement Pathway Link Kawasaki Disease and SARSCoV-2? Frontiers in Immunology, 11, Article ID: 604512. https://doi.org/10.3389/fimmu.2020.604512
[44]  Qi, Y., Xu, J., Lin, Z., Tao, Y., Zheng, F., et al. (2021) The Network of Pro-Inflammatory Factors CD147, DcR3, and IL33 in the Development of Kawasaki Disease. Journal of Inflammation Research, 14, 6043-6053. https://doi.org/10.2147/JIR.S338763
[45]  Chambers, P.W. (2020) COVID-19, ARDS, ACOVCS, MIS-C, KD, PMIS, TSS, MIS-A: Connecting the Alphabet? (See Figures 4,5). Clinical in Medicine, 2, Article No. 1027. http://doi.org/10.33597/2688-6731-V2-id1027
[46]  Kollias, G. and Sfikakis, P.P. (2010) TNF Pathophysiology. Molecular and Cellular Mechanisms. Current Directions in Autoimmunity, Vol. 11, Karger, Basel, 145-156. https://doi.org/10.1159/isbn.978-3-8055-9384-7
[47]  Hu, J., Lei, L., Wang, Y., Wang, K., Hu, X., et al. (2016) Interleukin-6 Drives Multiple Myeloma Progression by Up-Regulating of CD147/Emmprin Expression. Blood, 128, 5632. https://doi.org/10.1182/blood.V128.22.5632.5632
[48]  Regal-McDonald, K. and Patel, R.P. (2020) Selective Recruitment of Monocyte Sub-Sets by Endothelial Nglycans. The American Journal of Pathology, 190, 947-957. https://doi.org/10.1016/j.ajpath.2020.01.006
[49]  Heller, M., von der Ohe, M., Kleene, R., Mohajer, H. and Schachner, M. (2003) The Immunoglobulin-Superfamily Molecule Basigin Is a Binding Protein for Oligomannosidic Carbohydrates: An Anti-Idiotypic Approach. Journal of Neurochemistry, 84, 557-565. https://doi.org/10.1046/j.1471-4159.2003.01537.x
[50]  Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.Q., Du, P., et al. (2020) CD147-Spike Protein Is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduction and Targeted Therapy, 5, Article No. 283. https://doi.org/10.1038/s41392-020-00426-x
[51]  Ragotte, R.J., Pulidoa, D., Donnellana, F.R., Hill, M.L., Gorini, G., Davies, H., et al. (2021) Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 6, Article ID: E00647-21. https://doi.org/10.1128/mSphere.00647-21
[52]  Shilts, J., Crozier, T.W.M., Greenwood, E.J.D., Lehner, P.J. and Wright, G.J. (2021) No Evidence for Basigin/CD147 as a Direct SARS-CoV-2 Spike Binding Receptor. Scientific Reports, 11, Article No. 413. https://doi.org/10.1038/s41598-020-80464-1
[53]  Chambers, P.W. (2021) Basigin Binds Spike S on SARS2. Open Access Library Journal, 8, Article No. E8064. https://doi.org/10.4236/oalib.1108064
[54]  Ahmetaj-Shala, B., Vaja, R., Atanur, S.S., George, P.M., Kirkby, N.S., et al. (2020) Cardiorenal Tissues Express SARS-CoV-2 Entry Genes and Basigin (BSG/CD147) Increases with Age in Endothelial Cells. JACC: Basic to Translational Science, 5, 1111-1123. https://doi.org/10.1016/j.jacbts.2020.09.010
[55]  Sarangarajan, R., Winn, R., Kiebish, M.A., Bountra, C., Granger, E. and Narain, N.R. (2021) Ethnic Prevalence of Angiotensin-Converting Enzyme Deletion (D) Polymorphism and COVID-19 Risk: Rationale for Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers. Journal of Racial and Ethnic Health Disparities, 8, 973-980. https://doi.org/10.1007/s40615-020-00853-0
[56]  Al-Hinai, A.T., Hassan, M.O., Simsek, M., Al-Barwani, H. and Bayoumi, R. (2002) Genotypes and Allele Frequencies of Angiotensin Converting Enzyme (ACE) Insertion/deletion Polymorphism among Omanis, Table 2. SQU Journal for Scientific Research: Medical Sciences, 4, 25-27. https://applications.emro.who.int/imemrf/SQUMJ_2002_4_1_2_25.pdf
[57]  Kranes, S., Gove, T., Dodson, K., Jacobson, A., Latourelle, S. and Elwess, N. (2021) The Polymorphic ACE Gene and Resulting Genotypes and Allele Frequencies Within Specific Groups. SUNY Plattsburgh’s Scientia Discipulorum Journal of Undergraduate Research, 8, 1-7. http://hdl.handle.net/20.500.12648/1281
[58]  Min, S.K.K., Takahashi, K., Ishigami, H., Hiranuma, K., Mizuno, M., Ishii, T., et al. (2009) Is There a Gender Difference between ACE Gene and Race Distance? Applied Physiology, Nutrition, and Metabolism, 34, 926-932. https://doi.org/10.1139/H09-097
[59]  Regatieria, I.C., Almeida, M.L.M., Neto, A.R.T., Curi, R.A., Ferraz, G.C. and Queiroz-Neto, A. (2016) Quantification of MCT1 and CD147 in Red Blood Cells of Arabian and Quarter Horses. Journal of Equine Veterinary Science, 43, 66-71. https://doi.org/10.1016/j.jevs.2016.05.004
[60]  Avolio, E., Carrabba, M., Milligan, R., Williamson, M.K. and Beltrami, A.P. (2021) The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function Through CD147-Receptor-Mediated Signaling: A Potential Noninfective Mechanism of COVID-19 Microvascular Disease. Clinical Science, 135, 2667-2689. https://doi.org/10.1042/CS20210735
[61]  Debreczeni, M.L., Németh, Z., Kajdácsi, E., Schwaner, E., Makó, V., et al. (2019) MASP-1 Increases Endothelial Permeability. Frontiers in Immunology, 10, Article No. 991. https://doi.org/10.3389/fimmu.2019.00991
[62]  Kang, D. and Kim, S. (2019) Clinical Aspects of Splenomegaly as a Possible Predictive Factor of Coronary Artery Changes in Kawasaki Disease. Cardiology in the Young, 29, 297-302. https://doi.org/10.1017/S1047951118002238
[63]  Urra, J.M., Cabrera, C.M., Porras, L. and Rodenas, I. (2020) Selective CD8 Cell Reduction by SARS-CoV-2 Is Associated with a Worse Prognosis and Systemic Inflammation in COVID-19 Patients. Clinical Immunology, 217, Article ID: 08486. https://doi.org/10.1016/j.clim.2020.108486
[64]  Zhang, K., Li, Z., Li, M., Zhang, Y., Wu, S. and Chen, C. (2017) Increase in T Helper Type 17 Cells in Children with Kawasaki Disease Is NR4A2 Dependent. European Journal of Inflammation, 16, 1-8. https://doi.org/10.1177/2058739218760945
[65]  Mavragani, C.P., Spyridakis, E.G. and Koutsilieris, M. (2012) Adult-Onset Still’s Disease: from Pathophysiology to Targeted Therapies. International Journal of Inflammation, 2012, Article ID: 879020, 10 p. https://doi.org/10.1155/2012/879020
[66]  Uyguna, T., Demir, B., Tosuna, V., Ungan, I., Kural, A., et al. (2019) Relationship between Interleukin-17A and Isolated Coronary Ectasia. Cytokine, 115, 84-88. https://doi.org/10.1016/j.cyto.2018.11.015
[67]  Cogan, E., Foulon, P, Cappeliez, O., Dolle, N., Vanfraechem, G. and De Backer, D. (2020) Multisystem Inflammatory Syndrome with Complete Kawasaki Disease Features Associated with SARS-CoV-2 Infection in a Young Adult. A Case Report. Frontiers in Medicine, 7, Article No. 428. https://doi.org/10.3389/fmed.2020.00428
[68]  Axis, M., Fatima, R. and Assaly, R. (2020) An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Journal of Medical Virology, 92, 2283-2285. https://doi.org/10.1002/jmv.25948
[69]  Aliza, M. (2020) Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. Journal of Medical Virology, 92, 2283-2285. https://doi.org/10.1002/jmv.25948
[70]  Grant, O.C., Montgomery, D., Ito, K. and Woods, R.J. (2020) Analysis of the SARS-CoV-2 Spike Protein Glycan Shield Reveals Implications for Immune Recognition. Scientific Reports, 10, Article No. 14991. https://doi.org/10.1038/s41598-020-71748-7
[71]  Bullen, G., Galson, J.D., Hall, G., Villar, P. and Moreels, L. (2021) Cross-Reactive SARS-CoV-2 Neutralizing Antibodies from Deep Mining of Early Patient Responses. Frontiers in Immunology, 15, Article No. 678570. https://doi.org/10.3389/fimmu.2021.678570
[72]  Geng, J., Chen, L., Yuan, Y., Wang, K., Wang, Y., Qin, C., et al. (2021) CD147 Antibody Specifically and Effectively Inhibits Infection and Cytokine Storm of SARS-CoV-2 and Its Variants Delta, Alpha, Beta, and Gamma. Signal Transduction and Targeted Therapy, 6, Article No. 347. https://doi.org/10.1038/s41392-021-00760-8
[73]  Federica Defendi, F., Leroy, C., Epaulard, O., Clavarino, G., Vilotitch, A., et al. (2021) Complement Alternative and Mannose-Binding Lectin Pathway Activation Is Associated with COVID-19 Mortality. Frontiers in Immunology, 10, Article No. 742446. https://doi.org/10.3389/fimmu.2021.742446
[74]  Bian, H., Zheng, Z.H., Wei, D., Wen, A., Zhang, Z., Lian, J.Q., et al. (2021) Safety and Efficacy of Meplazumab in Healthy Volunteers and COVID-19 Patients: A Randomized Phase 1 and an Exploratory Phase 2 Trial. Signal Transduction and Targeted Therapy, 6, Article No. 194. https://doi.org/10.1038/s41392-021-00603-6
[75]  Rambaldi, A., Gritti, G., Micò, M.C., Frigeni, M., Borleri, G., et al. (2020) Endothelial Injury and Thrombotic Microangiopathy in COVID-19: Treatment with the Lectin-Pathway Inhibitor Narsoplimab. Immunobiology, 225, Article ID: 152001. https://doi.org/10.1016/j.imbio.2020.152001
[76]  Knierman, M.D., Gelfanova, V., Zlatniski, N.A., Mullen, J.H., Siegel, R.W. and Konrad, R.J. (2021) Severe SARS-CoV-2 Infection Treated with the Mannose Binding Lectin Associated Serine Protease 2 (MASP2) Inhibitor Narsoplimab. Journal of Allergy and Infectious Diseases, 2, 24-28.
[77]  Bumiller-Bini, V., De Freitas Oliveira-Toré, C., Carvalho, T.M., Kretzschmar, G.C., Gonçalves, L.B., et al. (2021) MASPs at the Crossroad between the Complement and the Coagulation Cascades—The Case for COVID-19 (2021). Genetics and Molecular Biology, 44, Article ID: e20200199. https://doi.org/10.1590/1678-4685-gmb-2020-0199
[78]  Gralinskia, L.E., Sheahana, T.P., Morrison, T.E., Menacherya, V.D., Jensen, K., et al. (2018) Complement Activation Contributes to Severe Acute Respiratory Syndrome Coronavirus Pathogenesis. Host-Microbe Biology, 9, Article No. e01753-18. https://doi.org/10.1128/mBio.01753-18
[79]  Biryukov, S. and Stoute, J.A. (2014) Complement Activation in Malaria: Friend or Foe? Trends in Molecular Medicine, 20, 293-301. https://doi.org/10.1016/j.molmed.2014.01.001
[80]  Elhadad, S., Chapin, J., Copertino, D., van Besien, K., Ahamed, J. and Laurence, J. (2021) MASP2 Levels Are Elevated in Thrombotic Microangiopathies: Association with Microvascular Endothelial Cell Injury and Suppression by Anti-MASP2 Antibody Narsoplimab. Clinical and Experimental Immunology, 203, 96-104. https://doi.org/10.1111/cei.13497
[81]  Magro, C., Mulvey, J.J., Berlin, D., Harp, J., Baxter-Stoltzfus, A., Laurence, J., et al. (2020) Complement Associated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19 Infection: A Report of Five Cases. The Journal of Laboratory and Clinical Medicine, 220, 1-13. https://doi.org/10.1016/j.trsl.2020.04.007
[82]  Eriksson, O., Hultström, M., Persson, B., Lipcsey, M., Ekdahl, K.N., et al. (2020) Mannose-Binding Lectin Is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients. Thrombosis and Haemostasis, 120, 1720-1724. https://doi.org/10.1055/s-0040-1715835
[83]  US Government Clinical Trials (2020). (CBDRA60) to Prevent Or Reduce Symptoms of COVID-19 and Prevention of Post-Acute Sequelae of SARS-CoV-2 Infection PASC. https://www.clinicaltrials.gov/ct2/show/NCT04777981
[84]  Barre, A., van Damme, E.J.M., Simplicien, M., Le Poder, S., Klonjkowski, B., et al. (2021) Mannose-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARSCoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells, 10, Article No. 1619. https://doi.org/10.3390/cells10071619
[85]  Ogata, A.F., Cheng, C., Desjardins, M., Senussi, Y., Sherman, A.C., et al. (2021) Circulating Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Vaccine Antigen Detected in the Plasma of MRNA-1273 Vaccine Recipients. Clinical Infectious Diseases, Article No. ciab465. https://doi.org/10.1093/cid/ciab465
[86]  Japanese Government (n.d.) SARS-CoV-2 MRNA Vaccine (BNT162, PF-07302048). In: Pfizer Report, Japanese Government, Tokyo, 6. https://www.docdroid.net/xq0Z8B0/pfizer-Reportjapanesegovernmentpdf#page=16
[87]  Out of Mind (2021, August 22). https://www.oom2.com/t76590-Shocking-New-Study-Reveals-Covid-Vaccines-Do-Permanent-Damage-To-62-Of-Recipients
[88]  Gupta, A., Sardar, P., Cash, M.E., Milani, R.V. and Lavie, C.J. (2021) Covid-19 Vaccine-Induced Thrombosis and Thrombocytopenia—A Commentary on an Important and Practical Clinical Dilemma. Progress in Cardiovascular Diseases, 67, 105-107. https://doi.org/10.1016/j.pcad.2021.05.001
[89]  Arepally, G.M. (2017) Heparin-Induced Thrombocytopenia. Blood, 129, 2864-2872. https://doi.org/10.1182/blood-2016-11-709873
[90]  Warkentin, T.E. and Dager, W.E. (2005) Chapter 24. Heparin-Induced Thrombocytopenia. In: Garg, H.G., Linhardt, R.J. and Hales, C.A., Eds., Chemistry and Biology of Heparin and Heparan Sulfate, Elsevier Science, Amsterdam, 673-697. https://doi.org/10.1016/B978-008044859-6/50025-3
[91]  Clausen, T.M., Sandoval, D.R., Spliid, C.B., Ward, A.B., Carlin, A.F., et al. (2020) SARS-CoV-2 Infection Depends on Cellular Heparan Sulfate and ACE2. Cell, 183, 1043-1057.E15. https://doi.org/10.1016/j.cell.2020.09.033
[92]  Scully, M., Singh, D., Lown, R., Poles, A.K., Solomon, T., et al. (2021) Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 NCoV-19 Vaccination. New England Journal of Medicine, 384, 2202-2211. https://doi.org/10.1056/NEJMoa2105385
[93]  Comer, S.P., Cullivan, S., Szklanna, P.B., Weiss, L., Cullen, S., et al. (2021) COVID-19 Induces a Hyperactive Phenotype in Circulating Platelets. PLoS Biology, 19, Article ID: E3001109. https://doi.org/10.1371/journal.pbio.3001109
[94]  Saburova, O.A., Butina, T.Yu., Ryumin, A.M., Mikhailova, E.A. and Sobchak, D.M. (2020) Immunological Criteria for Predicting Severe and Complicated Forms of Chickenpox. Sovremennye Tehnologii V Medicine, 12, 48-54. https://doi.org/10.17691/stm2020.12.4.06
[95]  Elsaie, M.L., Youssef, E.A. and Nada, H.A. (2020) Herpes Zoster Might Be an Indicator for Latent COVID 19 Infection. Dermatologic Therapy, 33, Article ID: e13666. https://doi.org/10.1111/dth.13666
[96]  van Dam, C.S., Lede, I., Schaar, J., Al-Dulaimy, M., Rösken, R. and Smits, M. (2021) Herpes Zoster after COVID Vaccination. International Journal of Infectious Diseases, 111, 169-171. https://doi.org/10.1016/j.ijid.2021.08.048
[97]  Channa, L., Torre, K. and Rothe, M. (2021) Herpes Zoster Reactivation after MRNA-1273 (Moderna) SARS-CoV-2 Vaccination. American Academy of Dermatology, 15, 60-61. https://doi.org/10.1016/j.jdcr.2021.05.042
[98]  Shah, S., Baral, B., Chamlagain, R., Murarka, H., Adhikari, Y.R., et al. (2021) Reactivation of Herpes Zoster after Vaccination with an Inactivated Vaccine: A Case Report from Nepal. Clinical Case Reports, 9, Article ID: e05188. https://doi.org/10.1002/ccr3.5188
[99]  Steain, M., Sutherland, J.P., Rodriguez, M., Cunningham, A.L., Barry Slobedman, B., et al. (2014) Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia. Journal of Virology, 88, 2704-2716.
[100]  Serrano-Villar, S., Sainz, T., Lee, S.A., Hunt, P.W., Sinclair, E., Barbara, L., et al. (2014) HIV-Infected Individuals with Low CD4/CD8 Ratio Despite Effective Antiretroviral Therapy Exhibit Altered T Cell Subsets, Heightened CD8 T Cell Activation, and Increased Risk of Non-AIDS Morbidity and Mortality. PLoS Pathogens, 10, Article ID: e1004078. https://doi.org/10.1371/journal.ppat.1004078
[101]  Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kühnel, F. and Woller, N. (2018) CD4 and CD8 T Lymphocyte Interplay in Controlling Tumor Growth. Cellular and Molecular Life Sciences, 75, 689-713. https://doi.org/10.1007/s00018-017-2686-7
[102]  Knutti, N., Huber, O. and Friedrich, K. (2019) CD147 (EMMPRIN) Controls Malignant Properties of Breast Cancer Cells by Interdependent Signaling of WNT and JAK/STAT Pathways. Molecular and Cellular Biochemistry, 451, 197-209. https://doi.org/10.1007/s11010-018-3406-9
[103]  Chen, Y., Xu, J., Wu, X., Yao, H., Yan, Z., Guo, T., et al. (2020) CD147 Regulates Antitumor CD8 T-Cell Responses to Facilitate Tumor-Immune Escape. Cellular & Molecular Immunology, 18, 1995-2009. https://doi.org/10.1038/s41423-020-00570-y
[104]  Zheng, H. and Gong, B. (2017) CD147 Expression Was Positively Linked to Aggressiveness and Worse Prognosis of Gastric Cancer: A Meta and Bioinformatics Analysis. Oncotarget, 8, 90358-90370. https://doi.org/10.18632/oncotarget.20089
[105]  Nabeshima, K., Iwasaki, H., Koga, K., Hojo, H., Suzumiya, J., et al. (2006) Emmprin (Basigin/CD147): Matrix Metalloproteinase Modulator and Multifunctional Cell Recognition Molecule That Plays a Critical Role in Cancer Progression. Pathology International, 56, 359-367. https://doi.org/10.1111/j.1440-1827.2006.01972.x
[106]  Global Research (2021, September) Diagnostic Lab Certified Pathologist Reports 20 Times Increase of Cancer in Vaccinated Patients. https://www.globalresearch.ca/owner-Diagnostic-Labreports-20-Timesincrease-Cancer-Vaccinated-Patients/5756399
[107]  Henderson, L.A., Hoyt, K.J., Lee, P.Y., Rao, D.A., Jonsson, A.H., et al. (2020) Th17 Reprogramming of T Cells in Systemic Juvenile Idiopathic Arthritis. JCI Insight, 5, Article ID: e132508. https://doi.org/10.1172/jci.insight.132508
[108]  De Zuani, M., Laznicková, P., Tomasková, V., Dvoncová, M., Forte, G., et al. (2021) High CD4-To-CD8 Ratio Identifies an At-Risk Population Susceptible to Lethal COVID-19. Scandinavian Journal of Immunology, Early View, Article ID: e13125. https://doi.org/10.1111/sji.13125
[109]  Ngono, A.E., Syed, T., Nguyen, X.V., Regla-Navamercylia, J.A., Tono, S., et al. (2020) CD8 T Cells Mediate Protection Against Zika Virus Induced by an NS3-Based Vaccine. Science Advances, 6, Article ID: eabb2154. https://doi.org/10.1126/sciadv.abb2154
[110]  Kulkarni R. (2020) Antibody-Dependent Enhancement of Viral Infections. In: Bramhachari, P., Ed., Dynamics of Immune Activation in Viral Diseases, Springer, Singapore, 9-41. https://doi.org/10.1007/978-981-15-1045-8_2
[111]  Zellweger, R.M., Eddy, W.E., Tang, W.W., Miller, R. and Shresta, S. (2014) CD8 T Cells Prevent Antigen-Induced Antibody-Dependent Enhancement of Dengue Disease in Mice. The Journal of Immunology, 193, 4117-4124. https://doi.org/10.4049/jimmunol.1401597
[112]  Yahi, N., Chahinian, H. and Fantini, J. (2021) Infection-Enhancing Anti-SARS-CoV-2 Antibodies Recognize Both the Original Wuhan/D614G Strain and Delta Variants. A Potential Risk for Mass Vaccination? Journal of Infection, 83, 607-635. https://doi.org/10.1016/j.jinf.2021.08.010
[113]  Tanioka, H., Tanioka, S. and Kaga, K. (2021) Ivermectin for River Blindness and Malaria Why COVID-19 Is Not So Spread in Africa: How Does Ivermectin Affect It? MedRxiv 2021.03.26.21254377. https://doi.org/10.1101/2021.03.26.21254377
[114]  Scheim, D. (2020) Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion. https://doi.org/10.2139/ssrn.3636557
[115]  Haslam, S.M., Houston, K.M., Harnett, W., Reason, A.J. and Morris, H.R. (1999) Structural Studies of N-Glycans of Filarial Parasites. Conservation of Phosphorylcholine-Substituted Glycans among Species and Discovery of Novel Chito-Oligomers. Journal of Biological Chemistry, 274, 20953-20960. https://doi.org/10.1074/jbc.274.30.20953
[116]  Coste, I., Gauchat, J.F., Wilson, A., Izui, S., Jeannin, P., et al. (2001) Unavailability of CD147 Leads to Selective Erythrocyte Trapping in the Spleen. Blood, 97, 3984-3988. https://doi.org/10.1182/blood.V97.12.3984
[117]  Balaban, D.V., Popp, A., Lungu, A.M., Costache, R.S., Anca, I.A., et al. (2025) Ratio of Spleen Diameter to Red Blood Cell Distribution Width. Medicine, 94, Article No. e726. https://doi.org/10.1097/MD.0000000000000726
[118]  Pouladzadeh, M., Safdarian, M., Choghakabodi, P.M., Amini, F. and Sokooti, A. (2021) Validation of Red Cell Distribution Width as a COVID-19 Severity Screening Tool. Future Science OA, 7, 7. https://doi.org/10.2144/fsoa-2020-0199
[119]  Foy, B.H., Phil, D., Carlson, J.C.T., Reinertsen, E., et al. (2020) Association of Red Blood Cell Distribution Width with Mortality Risk in Hospitalized Adults with SARSCoV-2 Infection. JAMA Network Open, 3, Article ID: e2022058. https://doi.org/10.1001/jamanetworkopen.2020.22058
[120]  Srivastava, K., Cockburn, I.A., Swaim, A.M., Sullivan, D., Zavala, F., et al. (2008) Platelet Factor 4 Mediates Inflammation in Cerebral Malaria. Cell Host and Microbe, 4, 179-187. https://doi.org/10.1016/j.chom.2008.07.003
[121]  Campbell, R.A., Boilard, E. and Rondina, M.T. (2020) Is There a Role for the ACE2 Receptor in SARS-CoV-2 Interactions with Platelets? Journal of Thrombosis and Haemostasis, 19, 46-50. https://doi.org/10.1111/jth.15156
[122]  Yu, H.H., Qin, C., Chen, M., Wang, W. and Tian, D.S. (2020) D-Dimer Level Is Associated with the Severity of COVID-19. Thrombosis Research, 195, 219-225. https://doi.org/10.1016/j.thromres.2020.07.047
[123]  Zong, X., Gu, Y., Yu, H., Li, Z. and Wang, Y. (2021) Thrombocytopenia Is Associated with COVID-19 Severity and Outcome: An Updated Meta-Analysis of 5637 Patients with Multiple Outcomes. Laboratory Medicine, 52, 10-15. https://doi.org/10.1093/labmed/lmaa067
[124]  Tan, L., Wang, Q., Zhang, D., Ding, J., Huang, Q., Tang, Y.Q., et al. (2020) Lymphopenia Predicts Disease Severity of COVID-19: A Descriptive and Predictive Study. Signal Transduction and Targeted Therapy, 5, Article No. 33. https://doi.org/10.1038/s41392-020-0148-4
[125]  Huang, I. and Pranata, R. (2020) Lymphopenia in Severe Coronavirus Disease-2019 (COVID-19): Systematic Review and Meta-Analysis. Journal of Intensive Care, 8, Article No. 36. https://doi.org/10.1186/s40560-020-00453-4
[126]  Meltzer, E., Keller, S., Shmuel, S. and Schwartza, E. (2019) D-Dimer Levels in Non-Immune Travelers with Malaria. Travel Medicine and Infectious Disease, 27, 104-106. https://doi.org/10.1016/j.tmaid.2018.05.004
[127]  Kalungi, A., Kinyanda, E., Akena, D.H., Kaleebu, P. and Bisangwa, I.M. (2021) Less Severe Cases of COVID-19 in Sub-Saharan Africa: Could Coinfection or a Recent History of Plasmodium Falciparum Infection Be Protective? Frontiers in Immunology, 18, Article ID: 565625. https://doi.org/10.3389/fimmu.2021.565625
[128]  Kusi, K.A., Frimpong, A., Partey, F.D., Lamptey, H., Amoah, L.E. and Ofori, M.F. (2021) High Infectious Disease Burden as a Basis for the Observed High Frequency of Asymptomatic SARS-CoV-2 Infections in Sub-Saharan Africa. AAS Open Research, 4, 2. https://doi.org/10.12688/aasopenres.13196.2
[129]  Crump, A. and Omura, S. (2011) Ivermectin, ‘Wonder Drug’ from Japan: The Human Use Perspective. Proceedings of the Japan Academy, Series B, 87, 13-28. https://doi.org/10.2183/pjab.87.13
[130]  Pöltl, G., Kerner, D., Paschinger, K. and Wilson, I.B.H. (2007) N-Glycans of the Porcine Nematode Parasite Ascaris suum Are Modified with Phosphorylcholine and Core Fucose Residues. The FEBS Journal, 274, 714-726. https://doi.org/10.1111/j.1742-4658.2006.05615.x
[131]  Mogire, R.M., Mutua, A., Kimita, W., Kamau, A., Bejon, P., et al. (2020) Prevalence of Vitamin D Deficiency in Africa: A Systematic Review and Meta-Analysis. Lancet, 8, E134-E142. https://doi.org/10.1016/S2214-109X(19)30457-7
[132]  Lima-Costa, M.F., Mambrini, J.V.M., De Souza-Junior, P.R.B., Bof de Andrade, F., Peixoto, S.V., Vidigal, C.M., et al. (2020) Nationwide Vitamin D Status in Older Brazilian Adults and Its Determinants: The Brazilian Longitudinal Study of Aging (ELSI). Scientific Reports, 10, Article No. 13521. https://doi.org/10.1038/s41598-020-70329-y
[133]  Aparna, P., Muthathal, S., Nongkynrih, B. and Gupta, S.K. (2018) Vitamin D Deficiency in India. Journal of Family Medicine and Primary Care, 7, 324-330.
[134]  Scott, D.W., Chen, J., Chacko, B.K., Traylor Jr., J.G., Orr, A.W. and Patel. R.P. (2012) Role of Endothelial N-Glycan Mannose Residues in Monocyte Recruitment during Atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology, 32, e51-e59. https://doi.org/10.1161/ATVBAHA.112.253203
[135]  Wang, C., Jin, R., Zhu, X., Yan, J. and Li, G. (2015) Function of CD147 in Atherosclerosis and Atherothrombosis. Journal of Cardiovascular Translational Research, 8, 59-66. https://doi.org/10.1007/s12265-015-9608-6
[136]  Bilezikian, J.P., Bikle, D., Hewison, M., Lazaretti-Castro, M., Formenti, A.M, et al. (2020) Vitamin D and COVID-19. European Journal of Endocrinology, 183, R133-R147. https://doi.org/10.1530/EJE-20-0665
[137]  Chambers, E.S., Vukmanovic-Stejic, M., Turner, C.T., Shih, B.B., Trahair, H., et al. (2021) Vitamin D3 Replacement Enhances Antigen-Specific Immunity in Older Adults. Immunotherapy Advances, 1, Article No. ltaa008. https://doi.org/10.1093/immadv/ltaa008
[138]  Mercola, J., Grant, W.B. and Wagner, C.L. (2020) Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients, 12, Article No. 3361. https://doi.org/10.3390/nu12113361
[139]  Campi, I., Gennari, L., Merlotti, D., Mingiano, C., Frosali, A., Giovanelli, L., et al. (2021) Vitamin D and COVID-19 Severity and Related Mortality: A Prospective Study in Italy. BMC Infectious Diseases, 21, Article No. 566. https://doi.org/10.1186/s12879-021-06281-7
[140]  CDC (Centers for Disease Control and Prevention) (n.d.) Influenza (Flu). https://www.cdc.gov/flu/about/burden/index.html
[141]  Martineau, A.R., Jolliffe, D.A., Hooper, R.L., Greenberg, L., Aloia, J.F., Bergman, P., et al. (2017) Vitamin D Supplementation to Prevent Acute Respiratory Tract Infections: Systematic Review and Meta-Analysis of Individual Participant Data. BMJ, 356, Article No. i6583. https://doi.org/10.1136/bmj.i6583
[142]  Vázquez-Lorente, H., Herrera-Quintana, L., Molina-López, J., Gamarra-Morales, Y., López-González, B., et al. (2020) Response of Vitamin D after Magnesium Intervention in a Postmenopausal Population from the Province of Granada, Spain. Nutrients, 12, Article No. 2283. https://doi.org/10.3390/nu12082283
[143]  Frieri, M. and Ashok, V. (2011) Vitamin D Deficiency as a Risk Factor for Allergic Disorders and Immune Mechanisms. Allergy and Asthma Proceedings, 32, 438-444. https://doi.org/10.2500/aap.2011.32.3485
[144]  Ma, J.G., Wu, G.J., Xiao, H.L., Xiao, Y.M. and Zha, L. (2021) Vitamin D Has an Effect on Airway Inflammation and Th17/Treg Balance in Asthmatic Mice. Kaohsiung Journal of Medical Sciences, 37, 1113-1121. https://doi.org/10.1002/kjm2.12441
[145]  Pender, M.P. (2012) CD8 T-Cell Deficiency, Epstein-Barr Virus Infection, Vitamin D Deficiency, and Steps to Autoimmunity: A Unifying Hypothesis. Autoimmune Diseases, 2012, Article ID: 189096. https://doi.org/10.1155/2012/189096

Full-Text


Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133