The primary determinants of Covid severity are ACE genotype, the falciparum antigen (CD147), and vitamin D status. Specifically the I (insertion) and D (deletion) alleles, ACE polymorphisms determine the balance between the RAS (Renin Angiotensin System) and the KKS (Kallikrein Kinin System) in the response to SARS CoV2 (SARS2). CD147, the falciparum antigen, mediates the damage. Vitamin D modulates the immune response. The RAS and KKS connect Covid-19 to Kawasaki’s Disease (KD) and Toxic Shock Syndrome (TSS). Covid-19 pathogenesis is embroiled in a nature versus nurture debate, as it seems to target people of color, unless you live in sub Saharan Africa. There are only three plausible explanations for the latter and they have all been selectively ignored/suppressed by mainstream medicine. This article speaks to the genotypic nature of Covid-19. Angiotensin II, bradykinin, ACE2, ACE and its two polymorphic alleles play vital roles. They predict disease severity. They portend the ARDS variants. They portend extra pulmonary disease or not. The heavily glycosylated CD147 epitope on the spike protein S is key. It has been dismissed as non-existent by flawed studies. Yet its interaction with CD147 receptors on erythrocytes and T lymphocytes cannot be denied and is at the heart of the myocarditis conundrum. Using this key, multiple dots are connected and a red alert issued, whether Covid-19 or vaccine related. These include thrombosis, immune deficit, cancer progression, autoimmune disease, and ADE (Antibody Dependent Enhancement) for those at risk. In susceptible vaccinees its deleterious effects are accelerated. Assessment of this and preventative approaches are explored.
Gosangi, B., Rubinowitz, A.N., Irugu, D., Gange, C., Bader, A. and Cortopassi, I. (2021) COVID-19 ARDS: A Review of Imaging Features and Overview of Mechanical Ventilation and Its Complications. Emergency Radiology.
https://doi.org/10.1007/s10140-021-01976-5
Welker, C., Huang, J., Gil, I.N. and Ramakrishna, H. (2021) Acute Respiratory Distress Syndrome Update, with Coronavirus Disease 2019 Focus. Journal of Cardiothoracic and Vascular Anesthesia, 1-8. (In Press)
https://doi.org/10.1053/j.jvca.2021.02.053
van De Veerdonk, F.L., Netea, M.G., van Deuren, M., van der Meer, J.W.M., De Mast, Q., et al. (2020) KKS Blockade in Patients with COVID-19 to Prevent Acute Respiratory Distress Syndrome (Apr 2020). ELife, 9, Article ID: E57555.
https://doi.org/10.7554/eLife.57555
Middleton, E.A. and Zimmerman, G.A. (2021) COVID-19-Associated Acute Respiratory Distress Syndrome: Lessons from Tissues and Cells. Critical Care Clinics, 37, 777-793. https://doi.org/10.1016/j.ccc.2021.05.004
Volpe, M., Battistoni, A. and Mancia, G. (2016) Angiotensin II-Linked Hypothesis to Understand the Advantage of the Coevolution of Hypertension and Malaria. Circulation Research, 119, 1046-1048.
https://doi.org/10.1161/CIRCRESAHA.116.309855
Gallego-Delgado, J., Walther, T. and Rodriguez, A. (2016) The High Blood Pressure-Malaria Protection Hypothesis. Circulation Research, 119, 1071-1075.
https://doi.org/10.1161/CIRCRESAHA.116.309602
Biller, H., Zissel, G., Ruprecht, B., Nauck, M., Busse Grawitz, A. and Müller-Quernheim, J. (2006) Genotype-Corrected Reference Values for Serum Angiotensin-Converting Enzyme. European Respiratory Journal, 28, 1085-1091.
https://doi.org/10.1183/09031936.00050106
Rigat, B., Corvol, P. and Soubrier, F. (1990) An Insertion/deletion Polymorphism in the Angiotensin I-Converting Enzyme Gene Accounting for Half the Variance of Serum Enzyme Levels. Journal of Clinical Investigation, 86, 343-1346.
https://doi.org/10.1172/JCI114844
Radzikowska, U., Ding, M., Tan, G., Zhakparov, D., Peng, Y., Wawrzyniak, P., et al. (2020) Distribution of ACE2, CD147, CD26, and Other SARS-CoV-2 Associated Molecules in Tissues and Immune Cells in Health and in Asthma, COPD, Obesity, Hypertension, and COVID-19 Risk Factors. Allergy, 75, 2828-2845.
https://doi.org/10.1111/all.14429
Manne, B.K., Denorme, F., Middleton, E.A., Portier, I., Rowley, J.K., et al. (2020) Platelet Gene Expression and Function in Patients with COVID-19. Blood, 136, 1317-1329. https://doi.org/10.1182/blood.2020007214
McCracken, I.R., Saginc, G., He, L., Huseynov, A., Daniels, A., et al. (2021) Lack of Evidence of Angiotensin-Converting Enzyme 2 Expression and Replicative Infection by SARS-CoV-2 in Human Endothelial Cells. Circulation, 143, 865-868.
https://doi.org/10.1161/CIRCULATIONAHA.120.052824
Ganier, C., Du-Harpur, X., Harun, N., Wan, B., Arthurs, C., et al. (2020) CD147 (BSG) But Not ACE2 Expression Is Detectable in Vascular Endothelial Cells Within Single Cell RNA Sequencing Datasets Derived from Multiple Tissues in Healthy Individuals (bioRxiv Preprint). https://doi.org/10.1101/2020.05.29.123513
Zwaveling, S., van Wijk, R.G. and Karim, F. (2020) Pulmonary Edema in COVID-19: Explained by Bradykinin? Journal of Allergy and Clinical Immunology, 146, 1454-1455. https://doi.org/10.1016/j.jaci.2020.08.038
Takahashi, T., Yamaguchi, E., Furuya, K. and Kawakami, Y. (2001) The ACE Gene Polymorphism and Cough Threshold for Capsaicin after Cilazapril Usage. Respiratory Medicine, 95, 130-135. https://doi.org/10.1053/rmed.2000.1005
Mukae, S., Itoh, S., Aoki, S., Iwata, T., Nishio, K., Sato, R., et al. (2002) Association of Polymorphisms of the Renin-Angiotensin System and Bradykinin B2 Receptor with ACE-Inhibitor-Related Cough. Journal of Human Hypertension, 16, 857-863.
https://doi.org/10.1038/sj.jhh.1001486
Vahey, G.M., Marshall, K.E., McDonald, E., Martin, S.W., Tate, J.E., et al. (2021). Symptom Profiles and Progression in Hospitalized and Nonhospitalized Patients with Coronavirus Disease, Colorado, USA, 2020. Emerging Infectious Diseases, 27, 385-395. https://doi.org/10.3201/eid2702.203729
Raveendran, A.V., Jayadevan, R. and Sashidharan, S. (2021) Long COVID: An Overview. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, 869-875. https://doi.org/10.1016/j.dsx.2021.04.007
Becker, J.H., Lin, J.J., Doernberg, M., Stone, K., Navis, A., Festa, J.R., et al. (2021) Assessment of Cognitive Function in Patients after COVID-19 Infection. JAMA Network Open, 4, Article ID: E2130645.
https://doi.org/10.1001/jamanetworkopen.2021.30645
Brusco, I., Justino, A.B., Silva, C.S., Fischer, S., Cunha, T.M, et al. (2019) Kinins and Their B1 and B2 Receptors Are Involved in Fibromyalgia-Like Pain Symptoms in Mice. Biochemical Pharmacology, 168, 119-132.
https://doi.org/10.1016/j.bcp.2019.06.023
Joshi, S., Gomez, S., Duran-Mendez, M., Quiroz-Olvera, J., Garcia, C., et al. (2019) Aging Healthy, Or with Diabetes, Is Associated with ACE2/ACE Imbalance in the Hematopoietic Stem Progenitor Cells. The FASEB Journal, 33, 514.7-514.7.
https://doi.org/10.1096/fasebj.2019.33.1_supplement.514.7
Bank, S., Kumar De, S., Bankura, B., Maiti, S., Das, M., et al. (2021) ACE/ACE2 Balance Might Be Instrumental to Explain the Certain Comorbidities Leading to Severe COVID-19 Cases. Bioscience Reports, 41, Article ID: BSR20202014.
https://doi.org/10.1042/BSR20202014
Diorio, C., Henrickson, S.E., Vella, L.A., McNerney, K.O., Chase, J., et al. (2020) Multisystem Inflammatory Syndrome in Children and COVID-19 Are Distinct Presentations of SARS–CoV-2. Journal of Clinical Investigation, 130, 5967-5975.
https://doi.org/10.1172/JCI140970
Mirabito, K.M., Hilliard, L.M., Kett, M.M., Brown, R.D., Booth, S.C., et al. (2014) Sex- and Age-Related Differences in the Chronic Pressure Natriuresis Relationship: Role of the Angiotensin Type 2 Receptor. American Journal of Physiology—Renal Physiology, 307, F901-F907. https://doi.org/10.1152/ajprenal.00288.2014
Feng, W., Xu, X., Zhao, G., Zhao, J. and Dong, R. (2016) Increased Age-Related Cardiac Dysfunction in Bradykinin B2 Receptor Deficient Mice. The Journals of Gerontology: Series A, 71, 178-187. https://doi.org/10.1093/gerona/glu210
Fernandes, F.B., Fernandes, A.B., Febba, A.C.S., Leite, A.P.O., Leite, C.A., Vitalle, M.S.S., et al. (2021) Association of Ang-(1-7) and Des-Arg9BK as New Biomarkers of Obesity and Cardiometabolic Risk Factors in Adolescents. Hypertension Research, 44, 969-977. https://doi.org/10.1038/s41440-021-00618-0
Rafferty, M.S., Burrows, H., Joseph, J.P., Leveille, J., Nihtianova, S. and Amirian, S. (2021) Multisystem Inflammatory Syndrome in Children (MIS-C) and the Coronavirus Pandemic: Current Knowledge and Implications for Public Health. Journal of Infection and Public Health, 14, 484-494. https://doi.org/10.1016/j.jiph.2021.01.008
Most, Z.M., Hendren, N., Drazner, M.H. and Perl, T.M. (2021) Striking Similarities of Multisystem Inflammatory Syndrome in Children and a Myocarditis-Like Syndrome in Adults. Circulation, 143, 4-6.
https://doi.org/10.1161/CIRCULATIONAHA.120.050166
Maalmi, H., Berraïes, A., Tanguouru, E., Ammar, J., Abid, H., et al. (2012) The Impact of Vitamin D Deficiency on Immune T Cells in Asthmatic Children: A Case-Control Study. Journal of Asthma and Allergy, 5, 11-19.
https://doi.org/10.2147/JAA.S29566
Sriskandan, S. and Cohen, J. (2000) Kallikrein-Kinin System Activation in Streptococcal Toxic Shock Syndrome. Clinical Infectious Diseases, 30, 961-962.
https://doi.org/10.1086/313827
Fodil, S. and Annane, D. (2021) Complement Inhibition and COVID-19: the Story So Far. ImmunoTargets and Therapy, 10, 273-284.
https://doi.org/10.2147/ITT.S284830
Biezeveld, M.H., Kuipers, I.M., Geissler, J., Lam, J., Ottenkamp, J.J., et al. (2003) Association of Mannose-Binding Lectin Genotype with Cardiovascular Abnormalities in Kawasaki Disease. The Lancet, 361, 1268-1270.
https://doi.org/10.1016/S0140-6736(03)12985-6
Polycarpou, A., Grigoriadou, S., Klavinskis, L. and Sacks, S. (2021) Does the Lectin Complement Pathway Link Kawasaki Disease and SARSCoV-2? Frontiers in Immunology, 11, Article ID: 604512. https://doi.org/10.3389/fimmu.2020.604512
Qi, Y., Xu, J., Lin, Z., Tao, Y., Zheng, F., et al. (2021) The Network of Pro-Inflammatory Factors CD147, DcR3, and IL33 in the Development of Kawasaki Disease. Journal of Inflammation Research, 14, 6043-6053.
https://doi.org/10.2147/JIR.S338763
Kollias, G. and Sfikakis, P.P. (2010) TNF Pathophysiology. Molecular and Cellular Mechanisms. Current Directions in Autoimmunity, Vol. 11, Karger, Basel, 145-156.
https://doi.org/10.1159/isbn.978-3-8055-9384-7
Regal-McDonald, K. and Patel, R.P. (2020) Selective Recruitment of Monocyte Sub-Sets by Endothelial Nglycans. The American Journal of Pathology, 190, 947-957. https://doi.org/10.1016/j.ajpath.2020.01.006
Heller, M., von der Ohe, M., Kleene, R., Mohajer, H. and Schachner, M. (2003) The Immunoglobulin-Superfamily Molecule Basigin Is a Binding Protein for Oligomannosidic Carbohydrates: An Anti-Idiotypic Approach. Journal of Neurochemistry, 84, 557-565. https://doi.org/10.1046/j.1471-4159.2003.01537.x
Wang, K., Chen, W., Zhang, Z., Deng, Y., Lian, J.Q., Du, P., et al. (2020) CD147-Spike Protein Is a Novel Route for SARS-CoV-2 Infection to Host Cells. Signal Transduction and Targeted Therapy, 5, Article No. 283.
https://doi.org/10.1038/s41392-020-00426-x
Ragotte, R.J., Pulidoa, D., Donnellana, F.R., Hill, M.L., Gorini, G., Davies, H., et al. (2021) Human Basigin (CD147) Does Not Directly Interact with SARS-CoV-2 Spike Glycoprotein. MSphere, 6, Article ID: E00647-21.
https://doi.org/10.1128/mSphere.00647-21
Shilts, J., Crozier, T.W.M., Greenwood, E.J.D., Lehner, P.J. and Wright, G.J. (2021) No Evidence for Basigin/CD147 as a Direct SARS-CoV-2 Spike Binding Receptor. Scientific Reports, 11, Article No. 413. https://doi.org/10.1038/s41598-020-80464-1
Sarangarajan, R., Winn, R., Kiebish, M.A., Bountra, C., Granger, E. and Narain, N.R. (2021) Ethnic Prevalence of Angiotensin-Converting Enzyme Deletion (D) Polymorphism and COVID-19 Risk: Rationale for Use of Angiotensin-Converting Enzyme Inhibitors/Angiotensin Receptor Blockers. Journal of Racial and Ethnic Health Disparities, 8, 973-980. https://doi.org/10.1007/s40615-020-00853-0
Al-Hinai, A.T., Hassan, M.O., Simsek, M., Al-Barwani, H. and Bayoumi, R. (2002) Genotypes and Allele Frequencies of Angiotensin Converting Enzyme (ACE) Insertion/deletion Polymorphism among Omanis, Table 2. SQU Journal for Scientific Research: Medical Sciences, 4, 25-27.
https://applications.emro.who.int/imemrf/SQUMJ_2002_4_1_2_25.pdf
Kranes, S., Gove, T., Dodson, K., Jacobson, A., Latourelle, S. and Elwess, N. (2021) The Polymorphic ACE Gene and Resulting Genotypes and Allele Frequencies Within Specific Groups. SUNY Plattsburgh’s Scientia Discipulorum Journal of Undergraduate Research, 8, 1-7. http://hdl.handle.net/20.500.12648/1281
Min, S.K.K., Takahashi, K., Ishigami, H., Hiranuma, K., Mizuno, M., Ishii, T., et al. (2009) Is There a Gender Difference between ACE Gene and Race Distance? Applied Physiology, Nutrition, and Metabolism, 34, 926-932.
https://doi.org/10.1139/H09-097
Regatieria, I.C., Almeida, M.L.M., Neto, A.R.T., Curi, R.A., Ferraz, G.C. and Queiroz-Neto, A. (2016) Quantification of MCT1 and CD147 in Red Blood Cells of Arabian and Quarter Horses. Journal of Equine Veterinary Science, 43, 66-71.
https://doi.org/10.1016/j.jevs.2016.05.004
Avolio, E., Carrabba, M., Milligan, R., Williamson, M.K. and Beltrami, A.P. (2021) The SARS-CoV-2 Spike Protein Disrupts Human Cardiac Pericytes Function Through CD147-Receptor-Mediated Signaling: A Potential Noninfective Mechanism of COVID-19 Microvascular Disease. Clinical Science, 135, 2667-2689.
https://doi.org/10.1042/CS20210735
Kang, D. and Kim, S. (2019) Clinical Aspects of Splenomegaly as a Possible Predictive Factor of Coronary Artery Changes in Kawasaki Disease. Cardiology in the Young, 29, 297-302. https://doi.org/10.1017/S1047951118002238
Urra, J.M., Cabrera, C.M., Porras, L. and Rodenas, I. (2020) Selective CD8 Cell Reduction by SARS-CoV-2 Is Associated with a Worse Prognosis and Systemic Inflammation in COVID-19 Patients. Clinical Immunology, 217, Article ID: 08486.
https://doi.org/10.1016/j.clim.2020.108486
Zhang, K., Li, Z., Li, M., Zhang, Y., Wu, S. and Chen, C. (2017) Increase in T Helper Type 17 Cells in Children with Kawasaki Disease Is NR4A2 Dependent. European Journal of Inflammation, 16, 1-8. https://doi.org/10.1177/2058739218760945
Mavragani, C.P., Spyridakis, E.G. and Koutsilieris, M. (2012) Adult-Onset Still’s Disease: from Pathophysiology to Targeted Therapies. International Journal of Inflammation, 2012, Article ID: 879020, 10 p. https://doi.org/10.1155/2012/879020
Uyguna, T., Demir, B., Tosuna, V., Ungan, I., Kural, A., et al. (2019) Relationship between Interleukin-17A and Isolated Coronary Ectasia. Cytokine, 115, 84-88.
https://doi.org/10.1016/j.cyto.2018.11.015
Cogan, E., Foulon, P, Cappeliez, O., Dolle, N., Vanfraechem, G. and De Backer, D. (2020) Multisystem Inflammatory Syndrome with Complete Kawasaki Disease Features Associated with SARS-CoV-2 Infection in a Young Adult. A Case Report. Frontiers in Medicine, 7, Article No. 428. https://doi.org/10.3389/fmed.2020.00428
Axis, M., Fatima, R. and Assaly, R. (2020) An Inflammatory Cytokine Signature Predicts COVID-19 Severity and Survival. Journal of Medical Virology, 92, 2283-2285.
https://doi.org/10.1002/jmv.25948
Aliza, M. (2020) Elevated Interleukin-6 and Severe COVID-19: A Meta-Analysis. Journal of Medical Virology, 92, 2283-2285. https://doi.org/10.1002/jmv.25948
Grant, O.C., Montgomery, D., Ito, K. and Woods, R.J. (2020) Analysis of the SARS-CoV-2 Spike Protein Glycan Shield Reveals Implications for Immune Recognition. Scientific Reports, 10, Article No. 14991.
https://doi.org/10.1038/s41598-020-71748-7
Bullen, G., Galson, J.D., Hall, G., Villar, P. and Moreels, L. (2021) Cross-Reactive SARS-CoV-2 Neutralizing Antibodies from Deep Mining of Early Patient Responses. Frontiers in Immunology, 15, Article No. 678570.
https://doi.org/10.3389/fimmu.2021.678570
Geng, J., Chen, L., Yuan, Y., Wang, K., Wang, Y., Qin, C., et al. (2021) CD147 Antibody Specifically and Effectively Inhibits Infection and Cytokine Storm of SARS-CoV-2 and Its Variants Delta, Alpha, Beta, and Gamma. Signal Transduction and Targeted Therapy, 6, Article No. 347.
https://doi.org/10.1038/s41392-021-00760-8
Federica Defendi, F., Leroy, C., Epaulard, O., Clavarino, G., Vilotitch, A., et al. (2021) Complement Alternative and Mannose-Binding Lectin Pathway Activation Is Associated with COVID-19 Mortality. Frontiers in Immunology, 10, Article No. 742446. https://doi.org/10.3389/fimmu.2021.742446
Bian, H., Zheng, Z.H., Wei, D., Wen, A., Zhang, Z., Lian, J.Q., et al. (2021) Safety and Efficacy of Meplazumab in Healthy Volunteers and COVID-19 Patients: A Randomized Phase 1 and an Exploratory Phase 2 Trial. Signal Transduction and Targeted Therapy, 6, Article No. 194. https://doi.org/10.1038/s41392-021-00603-6
Rambaldi, A., Gritti, G., Micò, M.C., Frigeni, M., Borleri, G., et al. (2020) Endothelial Injury and Thrombotic Microangiopathy in COVID-19: Treatment with the Lectin-Pathway Inhibitor Narsoplimab. Immunobiology, 225, Article ID: 152001.
https://doi.org/10.1016/j.imbio.2020.152001
Bumiller-Bini, V., De Freitas Oliveira-Toré, C., Carvalho, T.M., Kretzschmar, G.C., Gonçalves, L.B., et al. (2021) MASPs at the Crossroad between the Complement and the Coagulation Cascades—The Case for COVID-19 (2021). Genetics and Molecular Biology, 44, Article ID: e20200199.
https://doi.org/10.1590/1678-4685-gmb-2020-0199
Biryukov, S. and Stoute, J.A. (2014) Complement Activation in Malaria: Friend or Foe? Trends in Molecular Medicine, 20, 293-301.
https://doi.org/10.1016/j.molmed.2014.01.001
Elhadad, S., Chapin, J., Copertino, D., van Besien, K., Ahamed, J. and Laurence, J. (2021) MASP2 Levels Are Elevated in Thrombotic Microangiopathies: Association with Microvascular Endothelial Cell Injury and Suppression by Anti-MASP2 Antibody Narsoplimab. Clinical and Experimental Immunology, 203, 96-104.
https://doi.org/10.1111/cei.13497
Magro, C., Mulvey, J.J., Berlin, D., Harp, J., Baxter-Stoltzfus, A., Laurence, J., et al. (2020) Complement Associated Microvascular Injury and Thrombosis in the Pathogenesis of Severe COVID-19 Infection: A Report of Five Cases. The Journal of Laboratory and Clinical Medicine, 220, 1-13.
https://doi.org/10.1016/j.trsl.2020.04.007
Eriksson, O., Hultström, M., Persson, B., Lipcsey, M., Ekdahl, K.N., et al. (2020) Mannose-Binding Lectin Is Associated with Thrombosis and Coagulopathy in Critically Ill COVID-19 Patients. Thrombosis and Haemostasis, 120, 1720-1724.
https://doi.org/10.1055/s-0040-1715835
US Government Clinical Trials (2020). (CBDRA60) to Prevent Or Reduce Symptoms of COVID-19 and Prevention of Post-Acute Sequelae of SARS-CoV-2 Infection PASC. https://www.clinicaltrials.gov/ct2/show/NCT04777981
Barre, A., van Damme, E.J.M., Simplicien, M., Le Poder, S., Klonjkowski, B., et al. (2021) Mannose-Specific Lectins from Plants, Fungi, Algae and Cyanobacteria, as Potential Blockers for SARS-CoV, MERS-CoV and SARSCoV-2 (COVID-19) Coronaviruses: Biomedical Perspectives. Cells, 10, Article No. 1619.
https://doi.org/10.3390/cells10071619
Japanese Government (n.d.) SARS-CoV-2 MRNA Vaccine (BNT162, PF-07302048). In: Pfizer Report, Japanese Government, Tokyo, 6.
https://www.docdroid.net/xq0Z8B0/pfizer-Reportjapanesegovernmentpdf#page=16
Gupta, A., Sardar, P., Cash, M.E., Milani, R.V. and Lavie, C.J. (2021) Covid-19 Vaccine-Induced Thrombosis and Thrombocytopenia—A Commentary on an Important and Practical Clinical Dilemma. Progress in Cardiovascular Diseases, 67, 105-107.
https://doi.org/10.1016/j.pcad.2021.05.001
Scully, M., Singh, D., Lown, R., Poles, A.K., Solomon, T., et al. (2021) Pathologic Antibodies to Platelet Factor 4 after ChAdOx1 NCoV-19 Vaccination. New England Journal of Medicine, 384, 2202-2211. https://doi.org/10.1056/NEJMoa2105385
Saburova, O.A., Butina, T.Yu., Ryumin, A.M., Mikhailova, E.A. and Sobchak, D.M. (2020) Immunological Criteria for Predicting Severe and Complicated Forms of Chickenpox. Sovremennye Tehnologii V Medicine, 12, 48-54.
https://doi.org/10.17691/stm2020.12.4.06
van Dam, C.S., Lede, I., Schaar, J., Al-Dulaimy, M., Rösken, R. and Smits, M. (2021) Herpes Zoster after COVID Vaccination. International Journal of Infectious Diseases, 111, 169-171. https://doi.org/10.1016/j.ijid.2021.08.048
Channa, L., Torre, K. and Rothe, M. (2021) Herpes Zoster Reactivation after MRNA-1273 (Moderna) SARS-CoV-2 Vaccination. American Academy of Dermatology, 15, 60-61. https://doi.org/10.1016/j.jdcr.2021.05.042
Shah, S., Baral, B., Chamlagain, R., Murarka, H., Adhikari, Y.R., et al. (2021) Reactivation of Herpes Zoster after Vaccination with an Inactivated Vaccine: A Case Report from Nepal. Clinical Case Reports, 9, Article ID: e05188.
https://doi.org/10.1002/ccr3.5188
Steain, M., Sutherland, J.P., Rodriguez, M., Cunningham, A.L., Barry Slobedman, B., et al. (2014) Analysis of T Cell Responses during Active Varicella-Zoster Virus Reactivation in Human Ganglia. Journal of Virology, 88, 2704-2716.
Ostroumov, D., Fekete-Drimusz, N., Saborowski, M., Kühnel, F. and Woller, N. (2018) CD4 and CD8 T Lymphocyte Interplay in Controlling Tumor Growth. Cellular and Molecular Life Sciences, 75, 689-713.
https://doi.org/10.1007/s00018-017-2686-7
Knutti, N., Huber, O. and Friedrich, K. (2019) CD147 (EMMPRIN) Controls Malignant Properties of Breast Cancer Cells by Interdependent Signaling of WNT and JAK/STAT Pathways. Molecular and Cellular Biochemistry, 451, 197-209.
https://doi.org/10.1007/s11010-018-3406-9
Zheng, H. and Gong, B. (2017) CD147 Expression Was Positively Linked to Aggressiveness and Worse Prognosis of Gastric Cancer: A Meta and Bioinformatics Analysis. Oncotarget, 8, 90358-90370. https://doi.org/10.18632/oncotarget.20089
Nabeshima, K., Iwasaki, H., Koga, K., Hojo, H., Suzumiya, J., et al. (2006) Emmprin (Basigin/CD147): Matrix Metalloproteinase Modulator and Multifunctional Cell Recognition Molecule That Plays a Critical Role in Cancer Progression. Pathology International, 56, 359-367. https://doi.org/10.1111/j.1440-1827.2006.01972.x
Global Research (2021, September) Diagnostic Lab Certified Pathologist Reports 20 Times Increase of Cancer in Vaccinated Patients.
https://www.globalresearch.ca/owner-Diagnostic-Labreports-20-Timesincrease-Cancer-Vaccinated-Patients/5756399
De Zuani, M., Laznicková, P., Tomasková, V., Dvoncová, M., Forte, G., et al. (2021) High CD4-To-CD8 Ratio Identifies an At-Risk Population Susceptible to Lethal COVID-19. Scandinavian Journal of Immunology, Early View, Article ID: e13125.
https://doi.org/10.1111/sji.13125
Zellweger, R.M., Eddy, W.E., Tang, W.W., Miller, R. and Shresta, S. (2014) CD8 T Cells Prevent Antigen-Induced Antibody-Dependent Enhancement of Dengue Disease in Mice. The Journal of Immunology, 193, 4117-4124.
https://doi.org/10.4049/jimmunol.1401597
Yahi, N., Chahinian, H. and Fantini, J. (2021) Infection-Enhancing Anti-SARS-CoV-2 Antibodies Recognize Both the Original Wuhan/D614G Strain and Delta Variants. A Potential Risk for Mass Vaccination? Journal of Infection, 83, 607-635. https://doi.org/10.1016/j.jinf.2021.08.010
Tanioka, H., Tanioka, S. and Kaga, K. (2021) Ivermectin for River Blindness and Malaria Why COVID-19 Is Not So Spread in Africa: How Does Ivermectin Affect It? MedRxiv 2021.03.26.21254377. https://doi.org/10.1101/2021.03.26.21254377
Scheim, D. (2020) Ivermectin for COVID-19 Treatment: Clinical Response at Quasi-Threshold Doses via Hypothesized Alleviation of CD147-Mediated Vascular Occlusion. https://doi.org/10.2139/ssrn.3636557
Haslam, S.M., Houston, K.M., Harnett, W., Reason, A.J. and Morris, H.R. (1999) Structural Studies of N-Glycans of Filarial Parasites. Conservation of Phosphorylcholine-Substituted Glycans among Species and Discovery of Novel Chito-Oligomers. Journal of Biological Chemistry, 274, 20953-20960.
https://doi.org/10.1074/jbc.274.30.20953
Coste, I., Gauchat, J.F., Wilson, A., Izui, S., Jeannin, P., et al. (2001) Unavailability of CD147 Leads to Selective Erythrocyte Trapping in the Spleen. Blood, 97, 3984-3988. https://doi.org/10.1182/blood.V97.12.3984
Balaban, D.V., Popp, A., Lungu, A.M., Costache, R.S., Anca, I.A., et al. (2025) Ratio of Spleen Diameter to Red Blood Cell Distribution Width. Medicine, 94, Article No. e726. https://doi.org/10.1097/MD.0000000000000726
Pouladzadeh, M., Safdarian, M., Choghakabodi, P.M., Amini, F. and Sokooti, A. (2021) Validation of Red Cell Distribution Width as a COVID-19 Severity Screening Tool. Future Science OA, 7, 7. https://doi.org/10.2144/fsoa-2020-0199
Foy, B.H., Phil, D., Carlson, J.C.T., Reinertsen, E., et al. (2020) Association of Red Blood Cell Distribution Width with Mortality Risk in Hospitalized Adults with SARSCoV-2 Infection. JAMA Network Open, 3, Article ID: e2022058.
https://doi.org/10.1001/jamanetworkopen.2020.22058
Campbell, R.A., Boilard, E. and Rondina, M.T. (2020) Is There a Role for the ACE2 Receptor in SARS-CoV-2 Interactions with Platelets? Journal of Thrombosis and Haemostasis, 19, 46-50. https://doi.org/10.1111/jth.15156
Yu, H.H., Qin, C., Chen, M., Wang, W. and Tian, D.S. (2020) D-Dimer Level Is Associated with the Severity of COVID-19. Thrombosis Research, 195, 219-225.
https://doi.org/10.1016/j.thromres.2020.07.047
Zong, X., Gu, Y., Yu, H., Li, Z. and Wang, Y. (2021) Thrombocytopenia Is Associated with COVID-19 Severity and Outcome: An Updated Meta-Analysis of 5637 Patients with Multiple Outcomes. Laboratory Medicine, 52, 10-15.
https://doi.org/10.1093/labmed/lmaa067
Huang, I. and Pranata, R. (2020) Lymphopenia in Severe Coronavirus Disease-2019 (COVID-19): Systematic Review and Meta-Analysis. Journal of Intensive Care, 8, Article No. 36. https://doi.org/10.1186/s40560-020-00453-4
Meltzer, E., Keller, S., Shmuel, S. and Schwartza, E. (2019) D-Dimer Levels in Non-Immune Travelers with Malaria. Travel Medicine and Infectious Disease, 27, 104-106. https://doi.org/10.1016/j.tmaid.2018.05.004
Kalungi, A., Kinyanda, E., Akena, D.H., Kaleebu, P. and Bisangwa, I.M. (2021) Less Severe Cases of COVID-19 in Sub-Saharan Africa: Could Coinfection or a Recent History of Plasmodium Falciparum Infection Be Protective? Frontiers in Immunology, 18, Article ID: 565625. https://doi.org/10.3389/fimmu.2021.565625
Kusi, K.A., Frimpong, A., Partey, F.D., Lamptey, H., Amoah, L.E. and Ofori, M.F. (2021) High Infectious Disease Burden as a Basis for the Observed High Frequency of Asymptomatic SARS-CoV-2 Infections in Sub-Saharan Africa. AAS Open Research, 4, 2. https://doi.org/10.12688/aasopenres.13196.2
Crump, A. and Omura, S. (2011) Ivermectin, ‘Wonder Drug’ from Japan: The Human Use Perspective. Proceedings of the Japan Academy, Series B, 87, 13-28.
https://doi.org/10.2183/pjab.87.13
Pöltl, G., Kerner, D., Paschinger, K. and Wilson, I.B.H. (2007) N-Glycans of the Porcine Nematode Parasite Ascaris suum Are Modified with Phosphorylcholine and Core Fucose Residues. The FEBS Journal, 274, 714-726.
https://doi.org/10.1111/j.1742-4658.2006.05615.x
Mogire, R.M., Mutua, A., Kimita, W., Kamau, A., Bejon, P., et al. (2020) Prevalence of Vitamin D Deficiency in Africa: A Systematic Review and Meta-Analysis. Lancet, 8, E134-E142. https://doi.org/10.1016/S2214-109X(19)30457-7
Lima-Costa, M.F., Mambrini, J.V.M., De Souza-Junior, P.R.B., Bof de Andrade, F., Peixoto, S.V., Vidigal, C.M., et al. (2020) Nationwide Vitamin D Status in Older Brazilian Adults and Its Determinants: The Brazilian Longitudinal Study of Aging (ELSI). Scientific Reports, 10, Article No. 13521.
https://doi.org/10.1038/s41598-020-70329-y
Aparna, P., Muthathal, S., Nongkynrih, B. and Gupta, S.K. (2018) Vitamin D Deficiency in India. Journal of Family Medicine and Primary Care, 7, 324-330.
Wang, C., Jin, R., Zhu, X., Yan, J. and Li, G. (2015) Function of CD147 in Atherosclerosis and Atherothrombosis. Journal of Cardiovascular Translational Research, 8, 59-66. https://doi.org/10.1007/s12265-015-9608-6
Bilezikian, J.P., Bikle, D., Hewison, M., Lazaretti-Castro, M., Formenti, A.M, et al. (2020) Vitamin D and COVID-19. European Journal of Endocrinology, 183, R133-R147. https://doi.org/10.1530/EJE-20-0665
Mercola, J., Grant, W.B. and Wagner, C.L. (2020) Evidence Regarding Vitamin D and Risk of COVID-19 and Its Severity. Nutrients, 12, Article No. 3361.
https://doi.org/10.3390/nu12113361
Campi, I., Gennari, L., Merlotti, D., Mingiano, C., Frosali, A., Giovanelli, L., et al. (2021) Vitamin D and COVID-19 Severity and Related Mortality: A Prospective Study in Italy. BMC Infectious Diseases, 21, Article No. 566.
https://doi.org/10.1186/s12879-021-06281-7
Vázquez-Lorente, H., Herrera-Quintana, L., Molina-López, J., Gamarra-Morales, Y., López-González, B., et al. (2020) Response of Vitamin D after Magnesium Intervention in a Postmenopausal Population from the Province of Granada, Spain. Nutrients, 12, Article No. 2283. https://doi.org/10.3390/nu12082283
Frieri, M. and Ashok, V. (2011) Vitamin D Deficiency as a Risk Factor for Allergic Disorders and Immune Mechanisms. Allergy and Asthma Proceedings, 32, 438-444.
https://doi.org/10.2500/aap.2011.32.3485
Ma, J.G., Wu, G.J., Xiao, H.L., Xiao, Y.M. and Zha, L. (2021) Vitamin D Has an Effect on Airway Inflammation and Th17/Treg Balance in Asthmatic Mice. Kaohsiung Journal of Medical Sciences, 37, 1113-1121. https://doi.org/10.1002/kjm2.12441