全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Estimation of the Population of Stars in the Universe

DOI: 10.4236/oalib.1108154, PP. 1-11

Subject Areas: Astrophysics, Theoretical Physics, Cosmology

Keywords: Probability Gradient Theorem, Visual Convergence Plane, Total Star Population

Full-Text   Cite this paper   Add to My Lib

Abstract

Stars are light years away, and their brightness depends on multiple variables. Starting in the 20th century, artificial satellites were launched that added to the bright bodies of the observable sky. From 26.816 satellite observations and 9.037 stars visible to the naked eye, regression models were made between brightness and distances. The existence of a visual convergence plane that receives light photons arriving with a delay, c = 299.792.458 m·s-1 was assumed. Under the principle of large-scale homogeneity and isotropy, the objective of the study was to develop models to estimate the population of stars in the universe. It is concluded that the correlation between the satellite brightness model and the surface light quantity model presented a high adjustment, so that the value of the a priori probability of emitting sources of photons (stars) per surface derives from the probability gradient theorem (TGP). The value 4.62E-9 starlight m-2·s1, is a universal constant obtained from the delay (speed) of light. The velocity of wave-bodies is associated with their probability of occurrence. The probability of physical phenomena is regulated by randomness which explains 50% and by causality which explains the remaining 50%. Light has a probability that arises from its speed, from that probability it is estimated that the population of stars in the universe is 4.5E24.

Cite this paper

Traversa-Tejero, I. P. (2021). Estimation of the Population of Stars in the Universe. Open Access Library Journal, 8, e8154. doi: http://dx.doi.org/10.4236/oalib.1108154.

References

[1]  Raasveldt, H.C. (1956) Investigación de la visión estereoscópica. Separata de la Revista de la Academia Colombiana de Ciencias. Boletín Geológico, 10, 5-58.
[2]  García, F.J., Taylor, M.J. and Kelley, M.C. (1997) Two-Dimensional Spectral Analysis of Mesospheric Airglow Image Data. Applied Optics, 36, 7374-7385. https://doi.org/10.1364/AO.36.007374
[3]  Storchi-Bergmann, T., Riffel, R.A., Riffel, R., et al. (2012) Two-Dimensional Mapping of Young Stars in the Inner 180 pc of NGC 1068: Correlation with Molecular Gas Ring and Stellar Kinematics. The Astrophysical Journal, 755, Article No. 87. https://doi.org/10.1088/0004-637X/755/2/87
[4]  Vogt, N., Hoffmann, S.M. and Tappert, C. (2019) Sobre las posibilidades de las identificaciones de novas clásicas entre las observaciones históricas de estrellas invitadas del Lejano Oriente. Astronomische Nachrichten, 340, 752-759. https://doi.org/10.1002/asna.201913635
[5]  Thackeray, A.D. (1963) The Milky Way. South African Journal of Science, 59, 553- 558.
[6]  Hainaut, O.R. and Williams, A.P. (2020) Impact of Satellite Constellations on Astronomical Observations with ESO Telescopes in the Visible and Infrared Domains European Southern Observatory. Astronomy & Astrophysics, 636, 12 p.
[7]  Mercier, C. (2019) Calculation of the Mass of the Universe, the Radius of the Universe, the Age of the Universe and the Quantum of Speed. Journal of Modern Physics, 10, 980-1001. https://doi.org/10.4236/jmp.2019.108065
[8]  Netchitailo, V.S. (2020) World-Universe Model—Alternative to Big Bang Model. Journal of High Energy Physics, Gravitation and Cosmology, 6, 133-158. https://doi.org/10.4236/jhepgc.2020.61012
[9]  Riess, A.G., Casertano, S., Yuan, W., et al. (2018) Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant. ArXiv: 1804.10655. https://arxiv.org/abs/1804.10655
[10]  Hippke, M. (2018) Interstellar Communication: Short Pulse Duration Limits of Optical SETI. Journal of Astrophysics and Astronomy, 39, Article No. 74. https://doi.org/10.1007/s12036-018-9565-y
[11]  Wuensche, C.A. (2003) Cosmología. Instituto Nacional de Pesquisas Espaciais.
[12]  Yale Bright Star Catalog. https://www.google.com/search?q=star brigth catalogue xlsx&oq=star brigth catalogue xls&aqs=chrome.1.69i57j33i10i160.17355j0j7&sourceid=chrome&ie=UTF-8
[13]  AAVSO (2013) Capitulo 3-Haciendo Observaciones. https://www.aavso.org/sites/default/files/publications_files/manual/spanish_2013/SChapter3-2013.pdf
[14]  Traversa, I.P.T. (2020) Posibilidad de nueva luz estelar, bajo la teoría del gradiente de probabilidad. Revista Brasileira de Física Tecnológica Aplicada, 7, 1-22. https://doi.org/10.3895/rbfta.v7n1.11705
[15]  Brekke, P. (2012) Our Explosive Sun: A Visual Feast of Our Source of Light and Life. Springer, New York.
[16]  Collison, F.M. and Poe, K. (2013) “Astronomical Tourism”: The Astronomy and Dark Sky Program at Bryce Canyon National Park. Tourism Management Perspectives, 7, 1-15. https://doi.org/10.1016/j.tmp.2013.01.002
[17]  Müller, D., Engel, J. and Döllner, J. (2012) Single-Pass Rendering of Day and Night Sky Phenomena. Vision, Modeling, and Visualization, Magdeburg, 12-14 November 2012, 8 p.
[18]  Fujiwara, T. and Yamaoka, H. (2004) Magnitude Systems in Old Star Catalogues. ArXiv: Astro-ph/0309322v4. https://arxiv.org/pdf/astro-ph/0309322.pdf
[19]  Noto, J. (1998) The Velocity Distributions of Hydrogen and Helium in the Earth’s Exosphere. Ph.D. Thesis, Boston University, Boston, 162 p.
[20]  Mallama, A. (2020) Starlink Satellite Brightness before VisorSat. ArXiv: 2006.08422. https://arxiv.org/abs/2006.08422
[21]  Bauer, S. and Lemmer, H. (2004) Planetary Aeronomy: Atmosphere Environments in Planetary Systems. Springer-Verlag, Berlin.
[22]  Bueche, F. (1988) Ciencias Físicas. Reverté, Barcelona, 432 p.
[23]  Räsänen, S. (2009) Light Propagation in Statistically Homogeneous and Isotropic Dust Universes. Journal of Cosmology and Astroparticle Physics, 2009, 11-13. https://doi.org/10.1088/1475-7516/2009/02/011
[24]  Hujeirat, A.A. (2018) On the Ultimate Fate of Massive Neutron Stars in an Ever Expanding Universe. Journal of Modern Physics, 9, 51-69. https://doi.org/10.4236/jmp.2018.91004
[25]  Shaikh, A.Y. and Bhoyar, S.R. (2015) Plane Symmetric Universe with Λ in f(R,T) Gravity. Prespacetime Journal, 6, 1179-1197
[26]  Manojlovic, L.M. (2015) Photometry-Based Estimation of the Total Number of Stars in the Universe. Applied Optics, 54, 6589-6591. https://doi.org/10.1364/AO.54.006589
[27]  ESA (2019) How Many Stars Are There in the Universe? European Space Agency.

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413