The network pharmacology and molecular docking technology were used to elucidate the mechanism of Artemisiae scopariae Herba (ASH) against liver cancer (LC). TCMSP and UniProt database were used to collect the active ingredients of ASH and predict their potential targets. The targets of LC were screened by GeneCards, OMIM and TTD database. The intersections of drug and disease targets were obtained by online software Venny 2.1, and the intersection targets were imported into R software (v3.6.3) for GO and KEGG function enrichment analysis. Construction of protein-protein interaction (PPI) network through STRING database, Cytoscape software was used to screen hub genes. Molecular docking analysis of hub genes was carried out with AutoDock vina software. A total of 13 active ingredients were screened out from ASH and 103 drug and disease intersection targets were screened. Finally, 7 hub targets including AKT1, TP53, JUN, MAPK1, TNF, RELA, IL6 were screened out. The hub targets were docked well with some active ingredients. The active ingredients of ASH are involved in hepatitis B, hepatitis C and other signaling pathways by acting on AKT1, TP53, JUN and other targets, which may play a role in the treatment of LC.
Cite this paper
Guo, W. , Zhang, K. and Yang, L. (2021). Prediction of the Active Ingredients and Mechanism of ASH against Liver Cancer Based on Network Pharmacology and Molecular Docking. Open Access Library Journal, 8, e7739. doi: http://dx.doi.org/10.4236/oalib.1107739.
Son, H.U., Lee, S., Heo, J.C. and Lee, S.H. (2017) The Solid-State Fermentation of Artemisia capillaris Leaves with Ganoderma lucidum Enhances the Anti-Inflammatory Effects in a Model of Atopic Dermatitis. International Journal of Molecular Medicine, 39, 1233-1241. https://doi.org/10.3892/ijmm.2017.2945
Jang, E., Kim, B.J., Lee, K.T., Inn, K.S. and Lee, J.H. (2015) A Survey of Therapeutic Effects of Artemisia capillaris in Liver Diseases. Evidence-Based Complementary and Alternative Medicine, 2015, Article ID: 728137.
https://doi.org/10.1155/2015/728137
Yapasert,R., Lertprasertsuk, N., Subhawa, S., Poofery, J., Sripanidkulchai, B., et al. (2020) Antitumor Efficacy of the Herbal Recipe Benja Amarit against Highly Invasive Cholangiocarcinoma by Inducing Apoptosis Both in Vitro and in Vivo. International Journal of Molecular Sciences, 21, 5669.
https://doi.org/10.3390/ijms21165669
Liu, M., Yan, Q., Sun, Y., Nam, Y., Hu, L., et al. (2020) A Hepatocyte Differentiation Model Reveals Two Subtypes of Liver Cancer with Different Oncofetal Properties and Therapeutic Targets. Proceedings of the National Academy of Sciences of the United States of America, 117, 6103-6113. https://doi.org/10.1073/pnas.1912146117
Anwanwan, D., Singh, S.K., Singh, S., Saikam, V. and Singh, R. (2020) Challenges in Liver Cancer and Possible Treatment Approaches. Biochimica et Biophysica Acta. Reviews on Cancer, 1873, Article ID: 188314.
https://doi.org/10.1016/j.bbcan.2019.188314
Wang, X., Hu, Z., Wang, Z., Cui, Y. and Cui, X. (2019) Angiopoietin-Like Protein 2 Is an Important Facilitator of Tumor Proliferation, Metastasis, Angiogenesis and Glycolysis in Osteosarcoma. American Journal of Translational Research, 11, 6341-6355.
Hefnawy, A., Khalil, I.H., Arafa, K., Emara, M. and El-Sherbiny, I.M. (2020) Dual-Ligand Functionalized Core-Shell Chitosan-Based Nanocarrier for Hepatocellular Carcinoma-Targeted Drug Delivery. International Journal of Nanomedicine, 15, 821-837. https://doi.org/10.2147/IJN.S240359
Wang, X., Wang, N., Cheung, F., Lao, L., Li, C., et al. (2015) Chinese Medicines for Prevention and Treatment of Human Hepatocellular Carcinoma: Current Progress on Pharmacological Actions and Mechanisms. Journal of Integrative Medicine, 13, 142-164. https://doi.org/10.1016/S2095-4964(15)60171-6
Jian, G.H., Su, B.Z., Zhou, W.J. and Xiong, H. (2020) Application of Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Eucommia ulmoides-Radix Achyranthis bidentatae against Osteoarthritis. BioData Mining, 13, 12. https://doi.org/10.1186/s13040-020-00221-y
Fang, J., Pan, Z., Yu, H., Yang, S., Hu, X., et al. (2020) Regulatory Master Genes Identification and Drug Repositioning by Integrative mRNA-miRNA Network Analysis for Acute Type A Aortic Dissection. Frontiers in Pharmacology, 11, Article ID: 575765. https://doi.org/10.3389/fphar.2020.575765
Yin, B., Bi, Y.M., Fan, G.J. and Xia, Y.Q. (2020) Molecular Mechanism of the Effect of Huanglian Jiedu Decoction on Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking. Journal of Diabetes Research, 2020, Article ID: 5273914. https://doi.org/10.1155/2020/5273914
Samec, M., Liskova, A., Koklesova, L., Samuel, S.M., Zhai, K., et al. (2020) Flavonoids against the Warburg Phenotype-Concepts of Predictive, Preventive and Personalised Medicine to Cut the Gordian Knot of Cancer Cell Metabolism. The EPMA Journal, 11, 377-398. https://doi.org/10.1007/s13167-020-00217-y
Silva, C.F.M., Batista, V.F., Pinto, D. and Silva, A.M.S. (2018) Challenges with Chromone as a Privileged Scaffold in Drug Discovery. Expert Opinion on Drug Discovery, 13, 795-798. https://doi.org/10.1080/17460441.2018.1494720
Shahzad, N., Khan, W., Md, S., Ali, A., Saluja, S.S., et al. (2017) Phytosterols as a Natural Anticancer Agent: Current Status and Future Perspective. Biomedicine & Pharmacotherapy, 88, 786-794. https://doi.org/10.1016/j.biopha.2017.01.068
Chen, J., Liang, J., Liu, S., Song, S., Guo, W., et al. (2018) Differential Regulation of AKT1 Contributes to Survival and Proliferation in Hepatocellular Carcinoma Cells by Mediating Notch1 Expression. Oncology Letters, 15, 6857-6864.
https://doi.org/10.3892/ol.2018.8193
Geng, X., Wang, Y., Hong, Q., Yang, J., Zheng, W., et al. (2015) Differences in Gene Expression Profiles and Signaling Pathways in Rhabdomyolysis-Induced Acute Kidney Injury. International Journal of Clinical and Experimental Pathology, 8, 14087-14098.
Chang, L., Yuan, W. and Zhu, L. (2020) β-Cantenin Is Potentially Involved in the Regulation of c-Jun Signaling Following Bovine Herpesvirus 1 Infection. Veterinary Microbiology, 248, Article ID: 108804. https://doi.org/10.1016/j.vetmic.2020.108804
Pierce, R.H., Campbell, J.S., Stephenson, A.B., Franklin, C.C., Chaisson, M., et al. (2000) Disruption of Redox Homeostasis in Tumor Necrosis Factor-Induced Apoptosis in a Murine Hepatocyte Cell Line. The American Journal of Pathology, 157, 221-236. https://doi.org/10.1016/S0002-9440(10)64533-6
Tan, W., Luo, X., Li, W., Zhong, J., Cao, J., et al. (2019) TNF-α Is a Potential Therapeutic Target to Overcome Sorafenib Resistance in Hepatocellular Carcinoma. EBioMedicine, 40, 446-456. https://doi.org/10.1016/j.ebiom.2018.12.047
Ricca, A., Biroccio, A., Trisciuoglio, D., Cippitelli, M., Zupi, G., et al. (2001) relA Over-Expression Reduces Tumorigenicity and Activates Apoptosis in Human Cancer Cells. British Journal of Cancer, 85, 1914-1921.
https://doi.org/10.1054/bjoc.2001.2174
Kim, Y., Allen, E., Baird, L.A., Symer, E.M., Korkmaz, F.T., et al. (2019) NF-κB RelA Is Required for Hepatoprotection during Pneumonia and Sepsis. Infection and Immunity, 87, e00132-19. https://doi.org/10.1128/IAI.00132-19
Chen, S., Tang, Y., Yang, C., Li, K., Huang, X., et al. (2020) Silencing CDC25A Inhibits the Proliferation of Liver Cancer Cells by Downregulating IL-6 in Vitro and in Vivo. International Journal of Molecular Medicine, 45, 743-752.
https://doi.org/10.3892/ijmm.2020.4461