全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

Recent Cosmological Anisotropy Explained by Dark Energy as Universes of Negative Gravitational Mass

DOI: 10.4236/oalib.1107587, PP. 1-12

Subject Areas: Classical Physics, Mathematical Analysis

Keywords: Cosmic Background Radiation, Dark Energy, Large-Scale Structure of Universe

Full-Text   Cite this paper   Add to My Lib

Abstract

A recent publication finds strong evidence for a violation of the Cosmological principle of isotropy across the CMB sky. This analysis revealed three distinct patches in the maps with circularly-averaged sizes between 40 to 70 degrees in radius. These three areas distinguish large-scale deviations from the all-sky mean value of several distinguished cosmological parameters measured separately. In this article, we analyze these results with a previous solution proposed to explained dark energy consistent with general relativity. This solution allows retrieving all the qualitative and quantitative observations (3 areas with the same kind of deviations from all-sky mean values, with circular boundaries, with right size and position, consistent with the sign of deviation for the Hubble parameter H0 for each area).

Cite this paper

Corre, S. L. (2021). Recent Cosmological Anisotropy Explained by Dark Energy as Universes of Negative Gravitational Mass. Open Access Library Journal, 8, e7587. doi: http://dx.doi.org/10.4236/oalib.1107587.

References

[1]  Fosalba, P. and Gaztañaga, E. (2021) Explaining Cosmological Anisotropy: Evidence for Causal Horizons from CMB Data. Monthly Notices of the Royal Astronomical Society, 504, 5840-5862. https://doi.org/10.1093/mnras/stab1193
[2]  Bennett, C.L., et al. (2013) Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results. The Astrophysical Journal Supplement, 208, 54 p. https://doi.org/10.1088/0067-0049/208/2/20
[3]  Alves, J., Forveille, T., Pentericci, L. and Shore, S. (2020) Planck 2018 Results. I. Overview and the Cosmological Legacy of Planck. A&A, 641, Article No. A1. https://www.aanda.org/articles/aa/full_html/2020/09/aa33880-18/aa33880-18.html
[4]  Eriksen, H.K., Hansen, F.K., Banday, A.J., Górski, K.M. and Lilje, P.B. (2004) Asymmetries in the Cosmic Microwave Background Anisotropy Field. The Astrophysical Journal, 605, 14-20. https://doi.org/10.1086/382267
[5]  Hajian, A., Souradeep, T. and Cornish, N. (2005) Statistical Isotropy of the Wilkinson Microwave Anisotropy Probe Data: A Bipolar Power Spectrum Analysis. The Astrophysical Journal, 618, L63-L66. https://doi.org/10.1086/427652
[6]  Eriksen, H.K., Banday, A.J., Górski, K.M., Hansen, F.K. and Lilje, P.B. (2007) Hemispherical Power Asymmetry in the Third-Year Wilkinson Microwave Anisotropy Probe Sky Maps. The Astrophysical Journal, 660, L81-L84. https://doi.org/10.1086/518091
[7]  Land, K. and Magueijo, J. (2007) The Axis of Evil Revisited. Monthly Notices of the Royal Astronomical Society, 378, 153-158. https://doi.org/10.1111/j.1365-2966.2007.11749.x
[8]  Hansen, F.K., Banday, A.J., Gorski, K.M., Eriksen, H.K. and Lilje, P.B. (2009) Power Asymmetry in Cosmic Microwave Background Fluctuations from Full Sky to Sub-Degree Scales: Is the Universe Isotropic? The Astrophysical Journal, 704, 1448-1458. https://doi.org/10.1088/0004-637X/704/2/1448
[9]  Samal, P.K., Saha, R., Jain, P. and Ralston, J.P. (2009) Signals of Statistical Anisotropy in WMAP Foreground-Cleaned Maps. Monthly Notices of the Royal Astronomical Society, 396, 511-522. https://doi.org/10.1111/j.1365-2966.2009.14728.x
[10]  Planck Collaboration et al. (2020) Planck 2018 Results. VII. Isotropy and Statistics of the CMB. A&A, 641, Article No. A7. https://www.aanda.org/articles/aa/full_html/2020/09/aa35201-19/aa35201-19.html
[11]  Quartin, M. and Notari, A. (2015) On the Significance of Power Asymmetries in Planck CMB Data at All Scales. Journal of Cosmology and Astroparticle Physics, 2015, Article No. 008. https://doi.org/10.1088/1475-7516/2015/01/008
[12]  Socas-Navarro, H. (2019) Can a Negative-Mass Cosmology Explain Dark Matter and Dark Energy? A&A, 626, Article No. A5. https://doi.org/10.1051/0004-6361/201935317 https://ui.adsabs.harvard.edu/abs/2019A%26A...626A...5S/abstract
[13]  Farnes, J.S. (2018) A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework. A&A, 620, Article No. A92. https://doi.org/10.1051/0004-6361/201832898 https://ui.adsabs.harvard.edu/abs/2018A%26A...620A..92F/abstract
[14]  Bonnor, W.B. (1989) Negative Mass in General Relativity. General Relativity and Gravitation, 21, 1143-1157. https://doi.org/10.1007/BF00763458 https://ui.adsabs.harvard.edu/abs/1989GReGr..21.1143B/abstract
[15]  Le Corre, S. (2018) About the Negative Gravitational Mass. Open Access Library Journal, 51, e4312. https://doi.org/10.4236/oalib.1104312
[16]  Riess, A., et al. (2021) Cosmic Distances Calibrated to 1% Precision with Gaia EDR3 Parallaxes and Hubble Space Telescope Photometry of 75 Milky Way Cepheids Confirm Tension with ΛCDM. The Astrophysical Journal Letters, 908, 11 p. https://doi.org/10.3847/2041-8213/abdbaf
[17]  Gaztañaga, E. (2020) The Size of Our Causal Universe. Monthly Notices of the Royal Astronomical Society, 494, 2766-2772. https://doi.org/10.1093/mnras/staa1000
[18]  Gaztañaga, E. (2021) Inside a Black Hole: the illusion of a Big Bang. https://hal.archives-ouvertes.fr/hal-03106344
[19]  Gaztañaga, E. (2021) The Cosmological Constant as a Zero Action Boundary. Monthly Notices of the Royal Astronomical Society, 502, 436-444. https://doi.org/10.1093/mnras/stab056
[20]  Le Corre, S. (2020) Negative Gravitational Mass: An Ideal Solution for Cosmology. Open Access Library Journal, 7, e6070. https://www.oalib.com/paper/pdf/5426416

Full-Text


comments powered by Disqus

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133

WeChat 1538708413