Traumatic Brain Injuries (TBI’s) are any disorder in a brain’s functionality that can be caused by numerous reasons, including motor-vehicle crashes, falls, and assaults. Impractical in-vivo head injury experiments compel bio- engineers to develop a robust, accurate, and efficient computer model. In this study, bovine brain samples were tested under a confined compression testing machine. Consequently, the result from unconfined compression tests, at quasi-static strain rates of ε=0.0004 s-1, ε=0.008 s-1, and ε=0.4 s-1, and a stress relaxation test under unconfined uniaxial compression with a ε=0.67 s-1 ramp rate were utilized for fitting brain tissue model. The tissue model employs Drucker stability criteria and conventional hyperelastic models. A finite element model was also developed and validated by experimental data to examine the experiments’ friction effect. Furthermore, the extracted brain tissue model was employed in a 3D head injury model. The 3D model was employed to examine the effect of Gz acceleration on the human brain and present damage threshold based on loss of consciousness in HIC and Maximum Brain Pressure criteria. It is shown that the relative difference between simulation results at friction coefficient of μ=0.5 and μ=0.0 are less than 20%, and the ramp rate variation has a slight effect on normalized shear modulus. Moreover, Head modeling results revealed that the Maximum Brain Pressure ≥ 3.1 KPa and HIC ≥ 30 are a representation of loss of consciousness.
Cite this paper
Shafiee, A. , Ahmadian, A. and Alidoost, M. (2021). Investigation of Loss of Consciousness Induced by Gravity Acceleration on the Human Brain. Open Access Library Journal, 8, e7507. doi: http://dx.doi.org/10.4236/oalib.1107507.
Peterson, A.B., Xu, L.K., Daugherty, J. and Breiding, M.J. (2019) Surveillance Report of Traumatic Brain Injury-Related Emergency Department Visits, Hospitalizations, and Deaths, United States, 2014.
Sigurdardottir, S., Andelic, N., Wehling, E., Anke, A., Skandsen, T., Holthe, O.O., Manskow, U.S. and Roe, C. (2020) Return to Work after Severe Traumatic Brain Injury: A National Study with a One-Year Follow-Up of Neurocognitive and Behavioural Outcomes. Neuropsychological Rehabilitation, 30, 281-297.
https://doi.org/10.1080/09602011.2018.1462719
Domel, A.G., Raymond, S.J., Giordano, C., Liu, Y.Z., Yousefsani, S.A., Fanton, M., Cecchi, N.J., Vovk, O., Pirozzi, I., Kight, A., et al. (2021) A New Open-Access Platform for Measuring and Sharing mTBI Data. Scientific Reports, 11, Article No. 7501. https://doi.org/10.1038/s41598-021-87085-2
Khezrloo, A., Tayebi, M., Shafiee, A. and Aghaie, A. (2021) Evaluation of Compressive and Split Tensile Strength of Slag Based Aluminosilicate Geopolymer Reinforced by Waste Polymeric Materials Using Taguchi Method. Materials Research Express, 8, Article ID: 025504. https://doi.org/10.1088/2053-1591/abe101
Shafiee, A., Mosadegh, P., Bashash, S., et al. (2014) Study of Cross-Coupling Effect in Piezoflexural Nanopositioning Stages. Modares Mechanical Engineering, 14, 1-8.
Ahmadian, A., Shafiee, A., Alidoost, M. and Akbari, A. (2021) Flexible Paper-Based Li-Ion Batteries: A Review. World Journal of Engineering and Technology, 9, 285.
https://doi.org/10.4236/wjet.2021.92020
Shafiee, A., Ahmadian, A. and Akbari, A. (2021) A Parametric Study of Mechanical Cross-Coupling in Parallel-Kinematics Piezo-Flexural Nano-Positioning Systems. World Journal of Engineering and Technology, 11, 596-613.
https://doi.org/10.4236/ojapps.2021.115043
Bazmara, M., Silani, M. and Dayyani, I. (2021) Effect of Functionally-Graded Interphase on the Elasto-Plastic Behavior of Nylon-6/Clay Nanocomposites: A Numerical Study. Technology, 17, 177-184.
Hoursan, H., Farahmand, F. and Ahmadian, M.T. (2021) Effect of Axonal Fiber Architecture on Mechanical Heterogeneity of the White Matter—A Statistical Micromechanical Model. Computer Methods in Biomechanics and Biomedical Engineering, 1-13. https://doi.org/10.1080/10255842.2021.1927000
Jiang, F.F., Roberts, W.E., Liu, Y.Z., Shafiee, A. and Chen, J. (2020) Mechanical Environment for Lower Canine T-Loop Retraction Compared to En-masse Space Closure with a Power-Arm Attached to Either the Canine Bracket or the Archwire. The Angle Orthodontist, 90, 801-810. https://doi.org/10.2319/050120-377.1
Farhang, B., Araghi, F.R., Bahmani, A., Moztarzadeh, F. and Shafieian, M. (2016) Landing Impact Analysis of Sport Surfaces Using Three-Dimensional Finite Element Model. Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, 230, 180-185.
https://doi.org/10.1177/1754337115591755
Hossain, M.J., Noori-Dokht, H., Karnik, S., Alyafei, N., Joukar, A., Trippel, S.B. and Wagner, D.R. (2020) Anisotropic Properties of Articular Cartilage in an Accelerated in Vitro Wear Test. Journal of the Mechanical Behavior of Biomedical Materials, 109, Article ID: 103834. https://doi.org/10.1016/j.jmbbm.2020.103834
Tavakol M. and Vaughan, T.J. (2020) The Structural Role of Osteocalcin in Bone Biomechanics and Its Alteration in Type-2 Diabetes. Scientific Reports, 10, Artic No. 17321.
Shekouhi, N., et al. (2020) Clinically Relevant Finite Element Technique Based Protocol to Evaluate Growing Rods for Early Onset Scoliosis Correction. JOR Spine, 3, Aeticle ID: e1119.
Akbari, A., Wang, D. and Chen, J. (n.d.) Peak Loads on Teeth from Generic Mouthpiece of Vibrational Device for Accelerating Tooth Movement. American Journal of Orthodontics and Dentofacial Orthopedics.
Shekouhi, N., DD, B.M.W., Kaeley, D.K. and Goel, V.K. (2020) Finite Element Based Test Protocol to Evaluate the Effect of Distraction on Growth Rods Spanning over Multiple Spinal Segments for Pediatric Scoliosis Patients. ORS Annual Meeting.
Sahoo, D., Robbe, C., Deck, C., Meyer, F., Papy, A. and Willinger, R. (2016) Head Injury Assessment of Non-Lethal Projectile Impacts: A Combined Experimental/Computational Method. Injury, 47, 2424-2441.
https://doi.org/10.1016/j.injury.2016.09.004
Ozkaya, E., Fabris, G., Macruz, F., Suar, Z.M., Abderezaei, J., Su, B., Laksari, K., Wu, L., Camarillo, D.B., Pauly, K.B., Wintermark, M. and Kurt, M. (2021) Viscoelasticity of Children and Adolescent Brains through MR Elastography. Journal of the Mechanical Behavior of Biomedical Materials, 115, Article ID: 104229.
https://doi.org/10.1016/j.jmbbm.2020.104229
Abderezaei, J., Pionteck, A., Terem, I., Dang, L., Scadeng, M., Morgenstern, P., Shrivastava, R., Holdsworth, S.J., Yang, Y. and Kurt, M. (2021) Development, Calibration, and Testing of 3d Amplified MRI (AMRI) for the Quantification of Intrinsic Brain Motion. Brain Multiphysics, Article ID: 100022.
https://doi.org/10.1016/j.brain.2021.100022
Lee, W., Moghaddam, A.O., Shen, S., Phillips, H., McFarlin, B.L., Johnson, A.W. and Toussaint Jr., K.C. (2021) An Optomechanogram for Assessment of the Structural and Mechanical Properties of Tissues. Scientific Reports, 11, Article No. 324.
https://doi.org/10.1038/s41598-020-79602-6
Moghaddam, A.O., Wei, J., Kim, J., Dunn, A.C. and Johnson, A.W. (2020) An Indentation-Based Approach to Determine the Elastic Constants of Soft Anisotropic Tissues. Journal of the Mechanical Behavior of Biomedical Materials, 103, Article No. 103539. https://doi.org/10.1016/j.jmbbm.2019.103539
Arefi, M., Nasr, M. and Loghman, A. (2018) Creep Analysis of the fg Cylinders: Time-Dependent Nonaxisymmetric Behavior. Steel and Composite Structures, 28, 331-347.
Rahmati, A.H. and Mohammadimehr, M. (2014) Vibration Analysis of Non-Uniform and Non-Homogeneous Boron Nitride Nanorods Embedded in an Elastic Medium under Combined Loadings Using DQM. Physica B: Condensed Matter, 440, 88-98. https://doi.org/10.1016/j.physb.2014.01.036
Arani, A.G., Abdollahian, M., Kolahchi, R. and Rahmati, A.H. (2013) Electro-Thermo-Torsional Buckling of an Embedded Armchair DWBNNT Using Nonlocal Shear Deformable Shell Model. Composites Part B: Engineering, 51, 291-299.
https://doi.org/10.1016/j.compositesb.2013.03.017
Jafarzadeh, H. and Mansoori, H. (2020) Phase Field Approach to Mode-I Fracture by Introducing an Eigen Strain Tensor: General Theory. Theoretical and Applied Fracture Mechanics, 108, Article ID: 102628.
https://doi.org/10.1016/j.tafmec.2020.102628
Mortazavian, E., Wang, Z.Y. and Teng, H.L. (2021) Effect of Heat Treatment on Microstructure and Hardness of a Worn Rail Repaired Using Laser Powder Deposition. International Journal of Transportation Science and Technology.
https://doi.org/10.1016/j.ijtst.2021.05.004
Maghsoudi-Ganjeh, M., Samuel, J., Ahsan, A.S., Wang, X.D. and Zeng, X.W. (2021) Intrafibrillar Mineralization Deficiency and Osteogenesis Imperfecta Mouse Bone Fragility. Journal of the Mechanical Behavior of Biomedical Materials, 117, Article ID: 104377. https://doi.org/10.1016/j.jmbbm.2021.104377
Alizadeh, V. and Tahani, M. (2015) Nonlinear Viscoelastic Dynamic Modeling of High-Speed Polypyrrole-Based Trilayer Bending Plate-Like Actuators Based on First-Order Shear Deformation Plate Theory. Journal of Intelligent Material Systems and Structures, 26, 292-308. https://doi.org/10.1177/1045389X14525489
Ehsani, A. and Pahlavan, L. (2009) Finite Element Modeling of Active Vibration Control of IPMC Beams. International Review of Automatic Control, 2, 491-496.
Moheimani, R., Aliahmad, N., Aliheidari, N., Agarwal, M. and Dalir, H. (2021) Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Scientific Reports, 11, Article No. 1104. https://doi.org/10.1038/s41598-020-80071-0
Menichetti, A., MacManus, D.B., Gilchrist, M.D., Depreitere, B., Sloten, J.V. and Famaey, N. (2020) Regional Characterization of the Dynamic Mechanical Properties of Human Brain Tissue by Microindentation. International Journal of Engineering Science, 155, Article ID: 103355. https://doi.org/10.1016/j.ijengsci.2020.103355
Li, Z.G., Yang, H.F., Wang, G.L., Han, X.Q. and Zhang, S.P. (2019) Compressive Properties and Constitutive Modeling of Different Regions of 8-Weekold Pediatric Porcine Brain under Large Strain and Wide Strain Rates. Journal of the Mechanical Behavior of Biomedical Materials, 89, 122-131.
https://doi.org/10.1016/j.ijengsci.2020.103355
Mihai, L.A., Budday, S., Holzapfel, G.A., Kuhl, E. and Goriely, A. (2017) A Family of Hyperelastic Models for Human Brain Tissue. Journal of the Mechanics and Physics of Solids, 106, 60-79. https://doi.org/10.1016/j.jmps.2017.05.015
Zhao, W., Choate, B. and Ji, S.B. (2018) Material Properties of the Brain in Injury-Relevant Conditions-Experiments and Computational Modeling. Journal of the Mechanical Behavior of Biomedical Materials, 80, 222-234.
https://doi.org/10.1016/j.jmbbm.2018.02.005
Teferra, K. and Brewick, P.T. (2019) A Bayesian Model Calibration Framework to Evaluate Brain Tissue Characterization Experiments. Computer Methods in Applied Mechanics and Engineering, 357, Article ID: 112604.
https://doi.org/10.1016/j.cma.2019.112604
Ruan, J.S., Khalil, T. and King, A.I. (1994) Dynamic Response of the Human Head to Impact by Three-Dimensional Finite Element Analysis. Journal of Biomechanical Engineering, 116, 44-50. https://doi.org/10.1115/1.2895703
Zhang, J.Y., Yoganandan, N., Pintar, F.A. and Gennarelli, T.A. (2006) Role of Translational and Rotational Accelerations on Brain Strain in Lateral Head Impact. Biomedical Sciences Instrumentation, 42, 501-506.
Shi, L.L., Han, Y., Huang, H.W., Davidsson, J. and Thomson, R. (2020) Evaluation of Injury Thresholds for Predicting Severe Head Injuries in Vulnerable Road Users Resulting from Ground Impact via Detailed Accident Reconstructions. Biomechanics and Modeling in Mechanobiology, 1-19.
https://doi.org/10.1007/s10237-020-01312-9
Pasquesi, S.A. and Margulies, S.S. (2018) Measurement and Finite Element Model Validation of Immature Porcine Brain-Skull Displacement during Rapid Sagittal Head Rotations. Frontiers in Bioengineering and Biotechnology, 6, 16.
https://doi.org/10.3389/fbioe.2018.00016
Nicolle, S., Lounis, M. and Willinger, R. (2004) Shear Properties of Brain Tissue over a Frequency Range Relevant for Automotive Impact Situations: New Experimental Results. Technical Report, SAE Technical Paper.
https://doi.org/10.4271/2004-22-0011
Pervin, F. and Chen, W.N. (2011) Effect of Inter-Species, Gender, and Breeding on the Mechanical Behavior of Brain Tissue. NeuroImage, 54, S98-S102.
https://doi.org/10.1016/j.neuroimage.2010.03.077
Shafiee, A., Ahmadian, M.T. and Hoviattalab, M. (2016) Mechanical Characterization of Brain Tissue in Compression. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 50138, V003T11A001.
Shafiee, A., Ahmadian, M.T., Hoursan, H. and Talab, M.H. (2015) Effect of Linear and Rotational Acceleration on Human Brain. Modares Mechanical Engineering, 15, 248-260.
Eskandari, F., Shafieian, M., Aghdam, M.M. and Laksari, K. (2021) Structural Anisotropy vs. Mechanical Anisotropy: The Contribution of Axonal Fibers to the Material Properties of Brain White Matter. Annals of Biomedical Engineering, 49, 991-999. https://doi.org/10.1007/s10439-020-02643-5
Eskandari, F., Rahmani, Z. and Shafieian, M. (2021) The Effect of Large Deformation on Poisson’s Ratio of Brain White Matter: An Experimental Study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235, 401-407. https://doi.org/10.1177/0954411920984027
Eskandari, F., Shafieian, M., Aghdam, M.M. and Laksari, K. (2021) Tension Strain-Softening and Compression Strain-Stiffening Behavior of Brain White Matter. Annals of Biomedical Engineering, 49, 276-286.
https://doi.org/10.1007/s10439-020-02541-w
Shuck, L.Z. and Advani, S.H. (1972) Rheological Response of Human Brain Tissue in Shear. Journal of Basic Engineering, 94, 905-911.
https://doi.org/10.1115/1.3425588
Shafiee, A., Ahmadian, M.T. and Hoviattalab, M. (2016) Traumatic Brain Injury Caused by Gz Acceleration. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Volume 50138, V003T11A002.
Shafiee, A., Ahmadian, M.T., Hoursan, H. and Hoviattalab, M. (2014) Two-Di- mensional Modeling and Analysis of the Effect of Linear Acceleration on Brain Strain Field in Traumatic Brain Injury. 22nd Annual International Conference on Mechanical Engineering, Athens, 19-22 July 2021, 22-29.
Chatelin, S., Deck, C., Renard, F., Kremer, S., Heinrich, C., Armspach, J.-P. and Willinger, R. (2011) Computation of Axonal Elongation in Head Trauma Finite Element Simulation. Journal of the Mechanical Behavior of Biomedical Materials, 4, 1905-1919. https://doi.org/10.1016/j.jmbbm.2011.06.007
Nahum, A.M., Smith, R. and Ward, C.C. (1977) Intracranial Pressure Dynamics during Head Impact. Technical Report, SAE Technical Paper.
https://doi.org/10.4271/770922
Chen, Y. and Ostoja-Starzewski, M. (2010) MRI-Based Finite Element Modeling of Head Trauma: Spherically Focusing Shear Waves. Acta Mechanica, 213, 155-167.
https://doi.org/10.1007/s00707-009-0274-0
Kleiven, S. and von Holst, H. (2002) Consequences of Head Size Following Trauma to the Human Head. Journal of Biomechanics, 35, 153-160.
https://doi.org/10.1016/S0021-9290(01)00202-0
Kleiven, S. (2003) Influence of Impact Direction on the Human Head in Prediction of Subdural Hematoma. Journal of Neurotrauma, 20, 365-379.
https://doi.org/10.1089/089771503765172327
Miller, K. and Chinzei, K. (2002) Mechanical Properties of Brain Tissue in Tension. Journal of Biomechanics, 35, 483-490. https://doi.org/10.1089/089771503765172327
Rashid, B., Destrade, M. and Gilchrist, M.D. (2013) Mechanical Characterization of Brain Tissue in Simple Shear at Dynamic Strain Rates. Journal of the Mechanical Behavior of Biomedical Materials, 28, 71-85.
https://doi.org/10.1016/j.jmbbm.2013.07.017
Laksari, K., Shafieian, M. and Darvish, K. (2012) Constitutive Model for Brain Tissue under Finite Compression. Journal of Biomechanics, 45, 642-646.
https://doi.org/10.1016/j.jbiomech.2011.12.023
Karimi, A., Navidbakhsh, M., Beigzadeh, B. and Faghihi, S. (2014) Retracted: Hyperelastic Mechanical Behavior of Rat Brain Infected by Plasmodium Berghei Anka-Experimental Testing and Constitutive Modeling. International Journal of Damage Mechanics, 23, 857-871. https://doi.org/10.1177/1056789513514072
Moran, R., Smith, J.H. and García, J.J. (2014) Fitted Hyperelastic Parameters for Human Brain Tissue from Reported Tension, Compression, and Shear Tests. Journal of Biomechanics, 47, 3762-3766. https://doi.org/10.1016/j.jbiomech.2014.09.030
Rashid, B., Destrade, M. and Gilchrist, M.D. (2012) Mechanical Characterization of Brain Tissue in Compression at Dynamic Strain Rates. Journal of the Mechanical Behavior of Biomedical Materials, 10, 23-38.
https://doi.org/10.1016/j.jmbbm.2012.01.022
Lissner, H.R., Lebow, M. and Evans, F.G. (1960) Experimental Studies on the Relation between Acceleration and Intracranial Pressure Changes in Man. Surgery, Gynecology & Obstetrics, 111, 329.
Scott, J., Stevenson, A.T. and Lupa, H. (2012) Space Tourism: An Acceleration Physiologist’s Perspective. Aviation, Space, and Environmental Medicine, 83, 1.
Whinnery, T. and Forster, E.M. (2013) The Gz-Induced Loss of Consciousness Curve. Extreme Physiology & Medicine, 2, Article No. 19.
https://doi.org/10.1186/2046-7648-2-19